

Check-list to perform the Reverse Engineering

Table of content

1.	Gather information	2
	Extract from the 3-View drawing :	
3.	Measure from the drawing	
4.	Create a new dataset and generate the 3D-Model	
5.	Update the shape of the fuselage (Longitudinal Control Lines)	
6.	Update the shape of the fuselage (Control Stations)	
7.	Update the powerplant:	
8.	Update the systems	
9.	Update weight and loading	
10.	Update performance	
11.	• •	
12.	•	

1. Gather information

- 1. 3-View drawings
- 2. Website of the manufacturer
- 3. Flight manual
- 4. Flight test reports
- 5. TCD (Type Certificate Datasheet):
 - a. https://www.easa.europa.eu/document-library/type-certificates
 - b. https://rgl.faa.gov/Regulatory and Guidance Library/rgMakeModel.nsf/MainFrame ?OpenFrameset

2. Extract from the 3-View drawing:

1. The side view (left)

2. The front view

3. The top view

Rotate if necessary (Paint)

3. Measure from the drawing

- 1. The length of the fuselage
- 2. The height of the fuselage
- 3. The width of the fuselage

4. Create a new dataset and generate the 3D-Model

→ Airplane/New Airplane

5. Update the shape of the fuselage (Longitudinal Control Lines)

- 1. Fuselages/#1/Geometry/Longitudinal Control Lines < Edit LCLs >
- 2. Load the background image (Side View)
 - → Side Background : Load
- 3. Resize and move the background image

- 4. Adjust the shape of the fuselage by moving the control points (red & blue)
- 5. Update the X-Z position of the different components (cf. red lines)

- → Wings/# 1 : Incidence
- → Vertical Tails/# 1 : X, Z
- → Vertical Tails /# 1/Sections/# 1 : Airfoil (cf. https://m-selig.ae.illinois.edu/ads/aircraft.html)
- → Vertical Tails/# 1/Sections/#1 : Chord,
- → Vertical Tails/# 1/Sections/#2 : Airfoil, Chord, X, Z Check tail area → Vertical Tails /#1 < Compute Area >
- → Vertical Tails/# 1/Rudders/# 1 : Relative Chord (i), Relative Chord (o), Position
- → Landing Gear/Main/Struts/# 1 : Mounted on, Position Airplane Side X, Position Wheel Side X, Z
- → Landing Gear/Main/Struts/# 1/Wheels/# 1 : Tire
- → Landing Gear/Auxiliary/Struts/# 1 : Position Airplane Side X, Position Wheel Side X, Z
- → Landing Gear/ Auxiliary /Struts/# 1/Wheels/# 1 : Tire
- → Engines/# 1/Propellers/# 1 : Spinner Diameter, Length
- → Engines/# 1 : X, Z

- 6. Load the background image (Top View)
 - → Top Background : Load
- 7. Resize and move the background image

- 8. Adjust the shape of the fuselage by moving the control points (red & blue)
- 9. Update the X-position of the different components (cf. red lines)

- → Wings/# 1 : X
- → Wings/# 1/Sections/#1 : Airfoil, Chord
- → Wings/# 1/Sections/#2 : Airfoil, Chord, X, Y
 Check wing area → Wings/#1 < Compute Area >
- → Wings/# 1/Control Surfaces/Ailerons/# 1 : Relative Chord (i), Relative Chord (o), Position inboard, Position outboard
- → Wings/# 1/High Lift Devices/Flaps/# 1 : Relative Chord (i), Relative Chord (o), Position inboard, Position outboard
- → Wings/# 1/High Lift Devices/Settings/# 1 Cruise : Flaps, Maximum Speed
- → Wings/# 1/High Lift Devices/Settings/# 2 Takeoff : Flaps, Maximum Speed
- → Wings/# 1/High Lift Devices/Settings/# 3 Landing : Flaps, Maximum Speed
- → Horizontal Tails/# 1 : X
- → Horizontal Tails/# 1/Sections/#1 : Airfoil, Chord
- → Horizontal Tails/# 1/Sections/#2 : Airfoil, Chord, X, Y
 Check tail area → Horizontal Tails /#1 < Compute Area >
- → Horizontal Tails/# 1/Elevators/# 1 : Relative Chord (i), Relative Chord (o), Position inboard, Position outboard

6. Update the shape of the fuselage (Control Stations)

- → Fuselages/#1/Geometry/Control Stations
- 1. Select the largest control station (#6)
 - → Fuselages/#1/Geometry/Control Stations/# 6 < Edit Shape >
- 2. Load the background image (Front View)
 - → Background : Load
 - → Resize and move the background image

- 3. Adjust the shape of the section by changing the CSP (Conic Shape Parameter) of the conics C 01-02 & C 02-03
 - → Fuselages/# 1/Geometry/Control Stations/# 6/C 01-02 : CSP
 - → Fuselages/# 1/Geometry/Control Stations/# 6/C 02-03 : CSP
- 4. Extend the modification to other sections
 - → Fuselages/# 1/Geometry/Control Stations/# 6 < Force all Sections to have the Shape of the Current One >
- 5. Update the Y-Z position of the different components (cf. red lines)

- → Wings/# 1 : Z
- → Wings/# 1/Sections/#2 : Z
- → Horizontal Tails/# 1 : Z
- → Horizontal Tails/# 1/Sections/#2 : Z
- → Engines/# 1/Propellers/# 1 : Diameter
- → Landing Gear/Main/Struts/# 1 : Mounted on, Position Airplane Side Y, Position Wheel Side Y

7. Update the powerplant:

→ Engines/# 1 : Model

→ Engines/# 1/Propellers/# 1 : Type, Number of blades

8. Update the systems

→ Select the systems to analyze

→ Systems/Fuel : Capacity (Maximum) Standard

9. Update weight and loading

→ Weight & Loading : MEW, MLW, MTOW, Fuel, Payload

10. Update performance

→ Select the performance to analyze

→ Performance/Stall/# 1 : Altitude, CG Position, Weight, Flight Speed

→ Performance/Stall/# 2 : Altitude, CG Position, Weight, Flight Speed

→ Performance/Cruise/# 1 : Altitude, CG Position, Weight, Flight Speed, Range, Power Setting

- → Performance/Takeoff/# 1 : CG Position, Flap Deflection, Weight, Headwind Speed, Load Factor, Rotation Speed, Takeoff Run, Takeoff to 15m, Runway altitude, Runway Slope, Runway Surface
- → Performance/Landing/# 1: Has Brakes ON, CG Position, Flap Deflection, Weight, Headwind Speed, Landing from 15m, Landing Run, Load Factor, Touch-Down Speed, Runway altitude, Runway Slope, Runway Surface
- → Performance/Maximum Rate of Climb : Altitude, CG Position, Weight, Flight Speed, Rate of Climb

11. Update the cost

→ Cost: Price

12. Update processing

→ **Processing**: Mass Equation