

Quick tour around ADS

Aircraft Design Process

ADS performs all the tasks of the Conceptual Design and some of the Preliminary design

- Components
 - Tooling

Aircraft Design Software

Conceptual Design	Preliminary Design	Detail Design
ADS	ADS	CAD Software
RDS (Raymer)	AAA (DARCorporation)	
	OpenVSP (NASA)	
	VSAero (NASA)	
	PIANO	
	J2 Aircraft	

Why ADS ?

Computation

- Accuracy (cf. validation reports)
- Compilation of the best algorithms
- Includes unique modules: reverse engineering, optimization, validation
- Focused on Conceptual Design (the airplane as a whole)

Use/Support

- User friendly application
- Large number of technical notes accessible directly from the software
- Efficient online technical support
- Customized online training
- Spoken languages: French/English

Versions

- Lifetime license
- Driven by the users
- Module-based (customize your own version with exactly what you need, no more)

Costs

- Affordable
- You pay for what you need (ADS "customized")
- Reduces drastically the development time and costs

List of the different modules in ADS

RE Reverse Engineering

Analyze in detail an existing aircraft

- ➔ Aerodynamic efficiency:
 - o Cl_{Mx}
 - o Cfe
 - $\circ \quad Cd_0$
- → Mass efficiency:
 - \circ W_{glider}/W_{MxTO}

Provide priceless information for

- → Engineers:
 - \circ $\;$ Acquire orders of magnitude to better start the design
 - o Acquire orders of magnitude to check the results
- ➔ Salesmen
 - Highlight strengths of the new design
 - Know the weak points of the competitors

Check the specifications

- ➔ Validate the numbers
- ➔ Adjust the requirements

Fix target values for

- → Wing loading
- ➔ Power loading
- ➔ Aerodynamics
- ➔ Mass

Reach the **best compromise** to fulfill the requirements

- ➔ Configuration
- ➔ Geometry
- ➔ Powerplant
- ➔ Technical choices

Take into account all internal components and structure

➔ Avoid interference between components

Analyze

- ➔ Performance
- ➔ Static and dynamic stability
- ➔ Costs

- 1. Compute the performance for different flight conditions
 - → Flight weight
 - ➔ Flight altitude
 - ➔ Power setting
 - ➔ Centre of gravity position
- 2. Compute the real impact of one modification made on an existing aircraft
- 3. Anticipate a problem before the problem occurs
 - ➔ Prepare actions
 - → Fix limits

More than 90% of the development cost are function of the decisions taken during the Conceptual Design. All the technical choices have an impact on the cost

- → Research & Development
- ➔ Manufacturing
- ➔ Operating
- ➔ Market price
- ➔ Breakeven Point

The 3D-Model may be exported in stl file format

- ➔ CAD software
- ➔ CFD Analysis
- ➔ 3D-Printers

BDF file format is generated in order to perform structural analysis in Patran/Nastran

CRUISE (70.6%)		
General		
Flight speed @71% power	430 kmh	
Mach Number	0.36 -	
- Ground speed (GS)	430 kmh	
- True Air Speed (TAS)		
- Indicated Air Speed (IAS)	QUALITY	
Airplane CG (%CMA)	Symbols	
Wing loading	+ Best plane	
Flight weight	 Horst plane 	
Fuel weight (estimated)	ADDUTNAMICS	
Payload (estimated)	Friction coefficient (CF) (-) - Cruise	
Flight altitude	0.003/5	0.00435 -
Endurance		Grassan-III-Ga
Fuel Consumption / CO2 Emission		SUNACA-200-0
Fuel (V100km)	Aerodynamic efficiency [Cf(limit) / Cf] (%) - Cruise	
Fuel (V100km/100kg)	35.5	77.3 %
Fuel (kg/100km)	•	Gastar-III-oa
Fuel (kg/100km/100kg)		SUNACA-200-0
CO2 (kg/100km)	Flat plate area perpendicular to flow (m ⁻) - Cruse	
CO2 (kg/100km/100kg)	0.078 0.330	0.116 m*
Airplane Attitude	•	CEA-308-0
Angle of Attack	in the second	SONACA-200-0
Flight Path Angle	Flat plate width perpendicular to flow (m) - Cruise	
Angle of Pitch	0.279 0 0.574	0.340 m
High Lift Devices	*	CEA-308-0
Wing trailing edge deflection angle		SONACA-200-0
Powerplant	Wing flaps efficiency (%)	
Power, maximum	72.9 0 186.7	72.9 %
Power, available	•	SONACA-200-0
Power, shaft		Glasiair-III-02_0
Power, required	FUEL	
Engine relative power (% nominal power)	Fuel (1/100km) - Cruise	
Specific fuel consumption	5.5	15.9 -
Propeller	*	CEA-308-0
Propeller - rpm		Glasiair-III-Oa
Propeller - Pitch angle	Fuel (I/100km/100kg) - Cruise	
	NA	7.1 -
	•	
	Fuel (kg/100km) - Cruise	
	4.1	11.4 -
		CEA-308-0

UPPER Surface (%)			LOWER Surface (%)					
4	x	Y			х	Y		
1	0	0	^	1	0	0	^	
2	0.049	0.403		2	0.073	-0.439		
3	0.509	1.446		3	0.709	-1.154		
4	1.393	2.573		4	1.956	-1.883		
5	2.687	3.729		5	3.708	-2.594		
6	4.383	4.87		6	5.933	-3.254		
7	6.471	5.964		7	8.609	-3.847		
8	8.936	6.984		8	11.708	-4.361		
9	11.761	7.904		9	15.2	-4.787		
10	14.925	8.707		10	19.05	-5.121		
11	18.404	9.374		11	23.218	-5.357		
12	22.169	9.892		12	27.659	-5.494		
13	26.187	10.247		13	32.326	-5.529		
14	30.422	10.425		14	37.167	-5.462		
15	34.839	10.405		15	42.127	-5.291		
16	39.438	10.162		16	47.15	-5.009		Sort by X
17	44.227	9.729		17	52.175	-4.614		
18	49.172	9.166		18	57.122	-4.063	1	Show Grap
19	54.204	8.515		19	62.019	-3.25		Compute
20	50.256	7 801	\sim	20	67.014	.2.221	\sim	

Results may be exported in

Tables may be exported in

→ .csv

→ .txt

Graphs may be exported in

- → .bmp
- → .pdf
- → .png
- → .svg

🛧 Toolbox				-		×
		Mass – Wing –	Raymer			
Input:		Glasiair-III-0* [Reverse E	Output:			
 General 			▲ Mass			
Classification		Light Airplane ~	Mass		73.7	kg
Has Tank	\checkmark					
 Design Limits 						
Mx Takeoff Weight	1 134.0 🗢	kg				
n1	3.80 🗢	-				
Flight Conditions						
Altitude	2 400 🗢	m				
Flight Speed	430 🗢	km/h				
4 Geometry						
Area	7.378 🗘	m² 25.0 🗢 %				
Aspect Ratio	6.81 🗢	- 25.0 🗣 %				
Mx Relative Thickness	12.9 🗢	% 25.0 🗣 %				
Sweep @ LE	2.9 🜩	٠				
Tank Volume	300.0 🗢	I.				
Taper Ratio	0.56 🗢	-				

... in which equations are explained graphically.

And in addition

Some database

- ➔ Aircraft
- ➔ Engine
- ➔ Airfoil
- ➔ Materials
- ➔ Batteries
- ➔ Tires
- ➔ Fuel
- ➔ Regulation

Link with other software

- ➔ XFoil
- ➔ DFDC

Large number of Technical Notes written to be used during the Conceptual Design

Reference

- ➔ Academic & Scientific publications
- ➔ USAF DATCOM
- ➔ Roskam
- → Raymer
- ➔ Torenbeek
- → ...