

In addition to the common features an aircraft design software must have, ADS has the following specificities:

Foreword: Investing in Modeling Tools for Smarter Engineering Decisions

ADS-Suite

1. A set of modules designed to carry out the complete conceptual design of any type of aircraft

All-in-One: Module based software

- 2. Module: CAD \rightarrow Unique toolset to generate exact geometry, quickly and efficiently
- 3. Module: Reverse Engineering \rightarrow Perform a highly detailed analysis of existing aircraft
- 4. Module: Design Level 1 \rightarrow To check, tune specifications
- 5. Module: Design Level 2 \rightarrow To define the best configuration to fulfill the requirements
- 6. Module: Performance Analysis \rightarrow To compute the performance for different flight conditions
- 7. Module: Dynamic Stability \rightarrow To model the dynamic behavior of the aircraft
- 8. Module: Cost Analysis \rightarrow To estimate R&D, manufacturing, operating costs, market price and breakeven point.
- 9. Module: Lift distribution \rightarrow To optimize the wing planform for safety and performance
- 10. Module: Flight Data Analyzer \rightarrow UAV/Aircraft Optimization and Flight Performance Analysis

Set of optimization tools

- 11. Aerodynamics \rightarrow Set of tools to select the best airfoils and wing planform
- 12. Powerplant \rightarrow List of engine candidates to fulfill the power requirement
- 13. Multiple Runs \rightarrow Sequential computations performed to identify the optimal configuration
- 14. 3D Geometry \rightarrow Unique set of features to optimize geometry
- 15. Design constraints \rightarrow Automatically controls results to meet different types of constraints

Integrated expertise

- 16. Level of stability \rightarrow Provides the user some tips to improve stability
- 17. Tracks changes \rightarrow Displays only results that have changed from one run to the next
- 18. Analyzes the results \rightarrow Displays qualitative analysis of results
- 19. Checks compliance with regulation \rightarrow Checks and informs if out of the limits of regulation
- 20. Tire selection \rightarrow Selects tire size in function of ground run operation
- 21. Airfoil selection \rightarrow Selects the best airfoil for the specified flight condition
- 22. Comparative analysis \rightarrow Compares the airplane with its competitors on different criteria
- 23. Aircraft Structure \rightarrow Displays structural parts to check for interference between components
- 24. Occupants \rightarrow Displays occupants to check cabin volume
- 25. Systems \rightarrow Displays systems to check the available volume reserved for them
- 26. Checks interference between components \rightarrow Checks and warns if there is interference
- 27. Checks CG Range \rightarrow Checks the CG position for all load cases
- 28. Visual Competitor Analysis \rightarrow Select and compare competitors graphically
- 29. Visual Version Analysis \rightarrow Select and compare versions graphically

Toolbox

- 30. Digitizer \rightarrow Digitizes any curve to retrieve the coordinates of the points that were used to draw it
- 31. Glide Polar Analyzer \rightarrow Analyzes the drag polar of a (motor)glider

Tools

- 32. Aerodynamics / Zero Lift Drag \rightarrow Sensitivity analysis in drag generation
- 33. Cost Analysis / Breakeven Point \rightarrow Sensitivity analysis in breakeven point determination
- 34. Cost Analysis / RDTE & Manufacturing \rightarrow Sensitivity analysis on RDTE & manufacturing costs
- 35. Mass \rightarrow Sensitivity analysis on mass estimation
- 36. Standard Atmosphere \rightarrow Lists the characteristics of the standard atmosphere at a given altitude
- 37. Unit Converter SI << >> FPSR

Database

38. Database \rightarrow Airplanes, Engines, Airfoils, Fuels, Batteries, Tires, Materials

Export Functions

- 39. Airplane Report \rightarrow Airplane report available in .doc, .txt, .csv file format
- 40. 3D-Geometry \rightarrow 3D Geometry may be exported in .stl file format
- 41. Graphs \rightarrow Graphs are saved in .bmp, .pdf, .png file format
- 42. Tables \rightarrow Tables are saved in .csv file format

Customized software

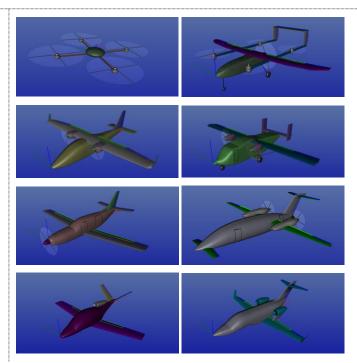
- 43. Add new modules \rightarrow Great flexibility of the software
- 44. Frequent new releases \rightarrow Frequent new releases demonstrate OAD's high level of responsiveness

Technical assistance

- 45. Getting started with the software \rightarrow OAD assists the customer getting started with ADS
- 46. Technical documentation \rightarrow Technical notes and videos accessible directly from the software
- 47. Technical support \rightarrow OAD may assist the customer at any time

References

48. ADS for everyone \rightarrow Serving customers from all sectors, including small, medium, and large companies, as well as individuals and universities

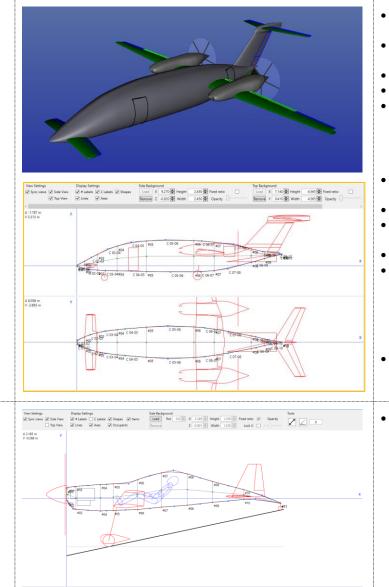

Foreword: Investing in Modeling Tools for Smarter Engineering Decisions

Modeling tools are essential assets for engineers aiming to make informed design decisions. In domains like aircraft design and other complex systems, these tools enable the creation of precise digital models that simulate real-world behavior.

By using modeling, engineers can analyze how systems perform, understand the interactions between components, and assess the impact of various inputs and modifications. This deep insight is crucial for identifying inefficiencies, weak points, and areas for potential improvement.

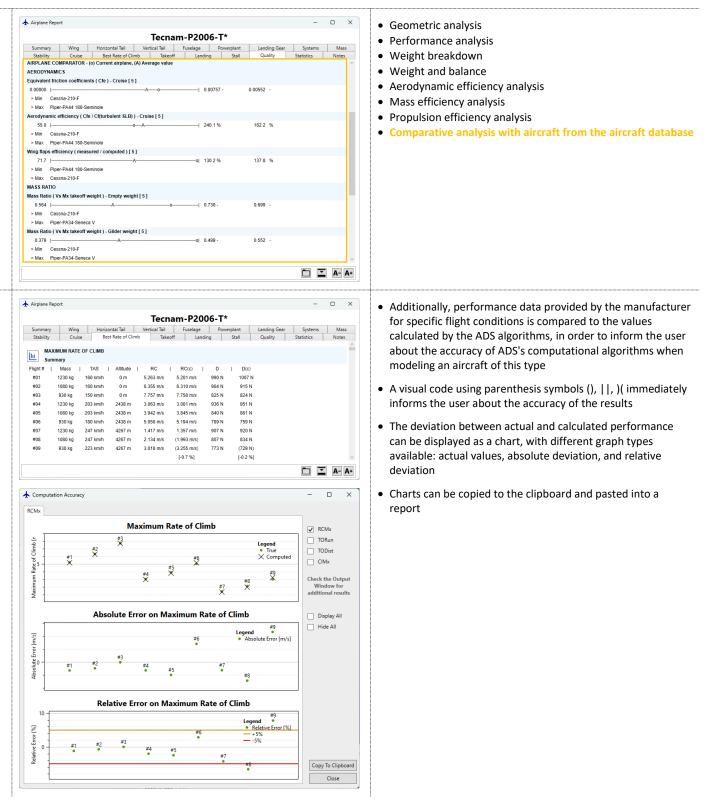
Moreover, modeling allows engineers to test and compare alternative scenarios without the need for costly real-world implementation. These simulations support better decision-making by enabling the exploration of multiple configurations, thus reducing risks and optimizing performance—while keeping costs under control.

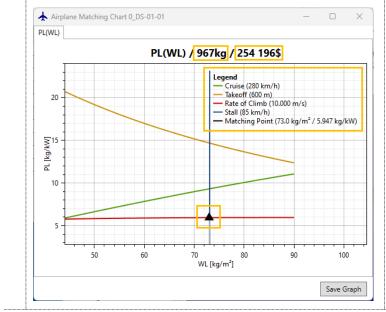
ADS-Suite


- 1. A set of modules designed to carry out the complete conceptual design of any type of aircraft
 - From VTOL drones to commercial airliners
 - Including their specific constraints such as regulatory requirements
 - Including technological features such as distributed propulsion and blown control surfaces (STOL)
 - Including various propulsion modes
 - Including all types of systems and payloads (passengers, cargo containers, etc.)
 - ..

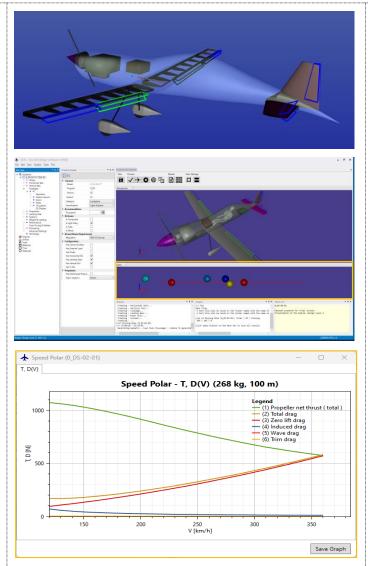
There is an infinite number of possible solutions to meet a given set of requirements. If the user wishes to test a technical solution that is not yet supported by ADS, we encourage them to contact us. In most cases, such solutions are quickly integrated into future versions of the software.

All-in-One: Module based software


2. Module: CAD \rightarrow Unique toolset to generate exact geometry, quickly and efficiently

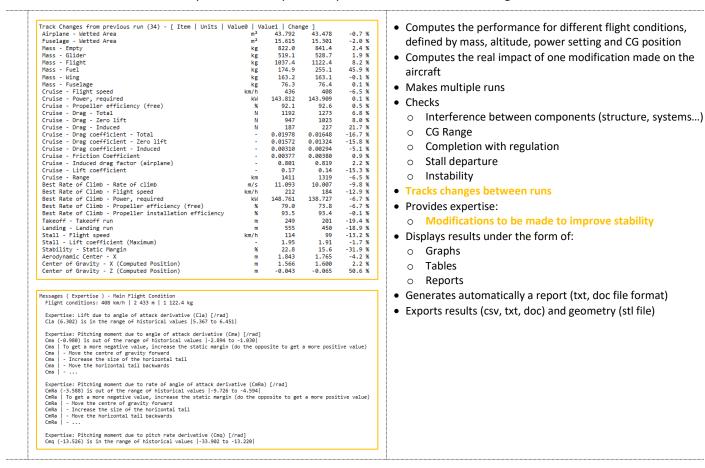

- To be used to generate a new design or reproduce an existing airplane
- Bodies define from longitudinal control lines (LCLs) and control stations (CtS), based on conics
- Lifting surfaces define from airfoil geometry
- Conics defined from Conic Shape Parameter (CSP)
- Operation on 3D-shapes:
- Body lofting
- Compute volume, wetted area
- Stretch shapes
- \circ $\;$ Align sections, force section to circular shape... $\;$
- Non-linear variation of control station offset and vertical position
- Non-linear variation of conic Shape Parameters
- Generate plots: volume, wetted area, cross section area (area rule)
- Geometry analysis and optimization (tangent continuity...)
- Representation of internal components:
 - Occupants
 - Payload
 - o Systems
 - o Tanks
 - o Gears
- Export function (stl file)
- The LCL line editor can also display: other geometric elements of the aircraft, a number of internal components such as occupants and the engine, as well as the ground position—both in-flight and on-ground.

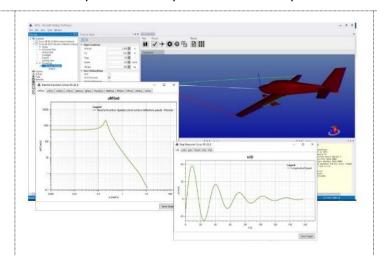
3. Module: Reverse Engineering \rightarrow Perform a highly detailed analysis of existing aircraft



4. Module: Design Level 1 \rightarrow To check, tune specifications

- Matching Point (Wing Loading, Power Loading)
- Geometry based on selected wing loading
- Maximum takeoff weight
- Market price, computed from geometry and technical choices
- All performance analyzed (Cruise, Stall, Takeoff, Climb)
- Propulsion based on selected power loading
- Generate a list of engine candidates from the engine database

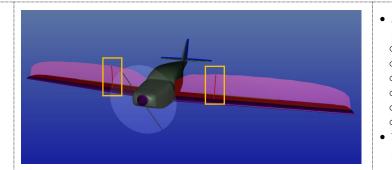

5. Module: Design Level 2 \rightarrow To define the best configuration to fulfill the requirements


- Defines the geometry
- Defines the propulsion
- Computes:
 - o Lifting surface geometry
 - Weight and balance
 - o Static and dynamic stability
 - Performance in stall, takeoff, climb, cruise, descent and landing, best range and best endurance flight conditions
 - \circ $\;$ Costs: market price, operating, R&D, manufacturing
- Checks
 - o Interference between components (structure, systems...)
 - CG position in a specific window, for different weight
 - $\circ \quad \text{CG Range}$
 - $\circ \quad \text{Completion with regulation} \\$
 - o Stall departure
 - Instability
- Tracks changes between runs
- Makes multiple runs
- Optimizes
 - o Airfoil selection
 - o Wing planform
- Provides expertise:
 - \circ $\;$ Modifications to be made to improve stability
 - Tire selection
 - To select the propeller
- Displays results under the form of:
 - o Graphs
 - Tables
 - o Reports
- Generates automatically a report (txt, doc file format)
- Exports results (csv, txt, doc) and geometry (stl file)

6. Module: Performance Analysis \rightarrow To compute the performance for different flight conditions

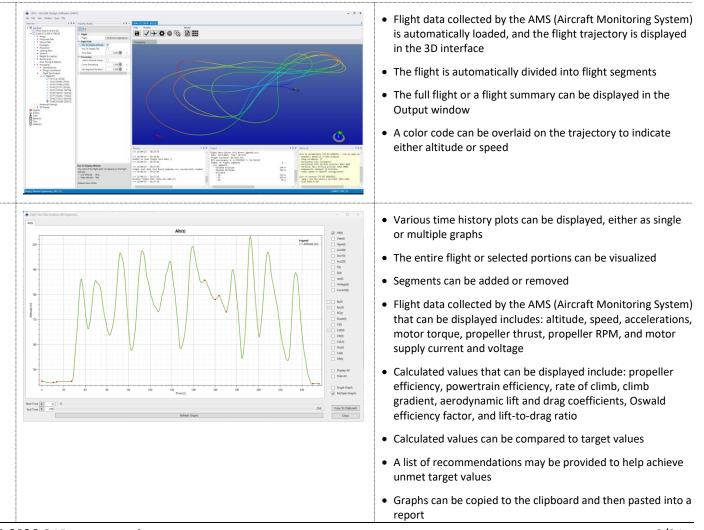
7. Module: Dynamic Stability \rightarrow To model the dynamic behavior of the aircraft

- Computes the dynamic stability of a plane by analyzing:
 - \circ the free response of the plane (eigenmodes)
 - \circ the harmonic response to control inputs
 - \circ the step response to control inputs

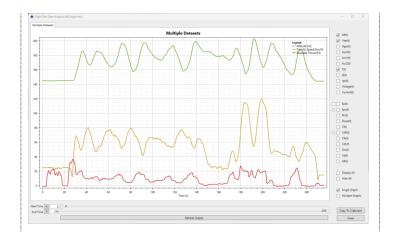


8. Module: Cost Analysis \rightarrow To estimate R&D, manufacturing, operating costs, market price and breakeven point.

Production Costs (DAPCA Model)															
Total FTA			1					-				-			
Total Production			1	-			10				100				00
Unit Cost	33	852	158	\$	5	441	515	\$	1	398	652	\$		585	38
Total Program Cost	33	852	158	\$	54	415	151	\$	139	865	185	\$	585	380	44
Nonrecurring															
Development-support	5	263	824	\$	5	263	824	\$	5	263	824	\$	5	263	82
Flight-tests	1	052	308	ŝ	1	052	308	\$	1	052	308	s	1	052	30
Materials															
Materials		476	050	\$	1	858	670	\$	10	929	047	\$	68	308	75
Labor															
Engineering	13	273	917	\$	17	525	814	\$	25	155	652	s	36	559	64
Tooling	6	072	402	ŝ	9	507	709	ŝ	17	034	372	ŝ	31	138	93
Manufacturing			641				681		43	098	888	ŝ	187	488	36
Quality Control			801				630			174				860	
Equipment				*	-							-			
Engine(s)		200	000	\$	1	100	000	\$	10	100	000	٢.	100	100	00
Propeller(s)			000		-		000			030				030	
Avionics			000				000			020				020	
Interior			000				000			020				020	
Profit		40	000	۰.		220	000	٩	2	020	000	٩	20	020	00
Production profit		205	216						13	000	F10			538	~


- Based on configuration, size and technology used on the aircraft, computes:
 - o Research and Development costs
 - o Production costs
- Operating costs
- o Estimated market price
- o Breakeven point
- Models the influence of technical choices on the costs in general

9. Module: Lift distribution \rightarrow To optimize the wing planform for safety and performance


- According to the selected airfoils, the planform of the lifting surface and the flight conditions, computes:
 - Lift distribution
 - Load factor
 - o Position of the maximum lift coefficient
 - o Position of the stall departure
- Oswald efficiency factor
- o Global lift coefficient
- Takes into account the presence of fuselage and external stores

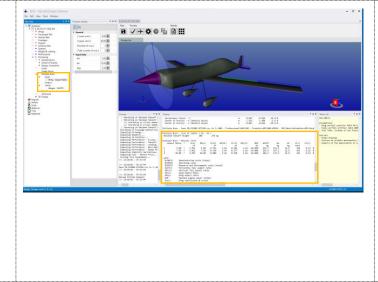
10. Module: Flight Data Analyzer \rightarrow UAV/Aircraft Optimization and Flight Performance Analysis

48 good reasons to adopt ADS

Set of optimization tools

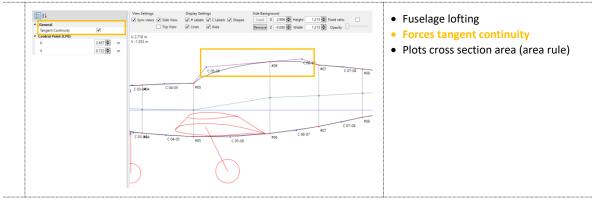
11. Aerodynamics \rightarrow Set of tools to select the best airfoils and wing planform

 Selection among 		Airfoil Candidates [10/876] @ RN# 2 000 000 @ Cl 0.20 - (Wing (@ Root Chord	• To generate the optimal wing planform
Canard Surface		USA-27 Mx thickness 11.2% at 25.0% chord	
Conventional Airplane	v	Mx camber 5.1% at 36.0% chord	• The sector state is the state of the second transformation of the balance of the second test second state of the second s
Flying Wing		C1/Cd 68.0	 To select the best airfoil according to the flight conditions
Human Power		Martin Hepperle-mh26 Mx thickness 11.0% at 42.0% chord	
Low Reynolds Number		Mx camber 1.5% at 41.0% chord	and some geometric and aerodynamic criteria
Other		Cl/Cd 60.9 Martin Hepperle-mh27	
Sailolane		Mx thickness 12.0% at 43.0% chord	• To compute the aerodynamic characteristics of any airfoil
Sailplane (RC)		Mx camber 1.5% at 41.0% chord	
Tailless		C1/Cd 57.7 NASA-SC(2)0606	geometry using Xfoil
Winglet		Mx thickness 6.0% at 34.0% chord	8
Selection on		Mx camber 0.4% at 77.0% chord C1/Cd 55.4	
Mn Drag Coefficient		Rolf Grisberger-14A	
Mn Pitching Moment		Mx thickness 7.0% at 31.0% chord Mx camber 1.4% at 36.0% chord	
Mn Pitching Moment Mx Camber		MX camper 1.4% at 36.0% chord C1/Cd 54.6	
Mx Camber Mx Lift Coefficient	✓	NACA-66209	
		Mx thickness 9.0% at 46.0% chord Mx camber 1.1% at 50.0% chord	
Mx Relative Thickness		C1/Cd 54.5	
Mx Relative Thickness - Loc		Martin Hepperle-mh33 Mx thickness 7.3% at 29.0% chord	
 Sorting Option 		Mx camber 1.1% at 42.0% chord	
Sorting Option	Glide Ratio @ Design Lift Coefficient ~	C1/Cd 54.5	
 Flight Conditions 		Gottingen-goe364 Mx thickness 10.8% at 28.0% chord	
Is Given	✓	Mx camber 6.5% at 33.0% chord	
CI	0.20 🗢 -	C1/Cd 53.8 Drela-A647c 03f	
RN	2 000 000 🗢 -	Mx thickness 5.1% at 23.0% chord Mx camber 2.0% at 46.0% chord	
 Mx Lift Coefficient 		C1/Cd 53.4	
Mn	1.00 🗢 -	Martin Hepperle-mh20 Mx thickness 9.0% at 31.0% chord	
 Output 		Mx thickness 9.0% at 31.0% chord Mx camber 2.0% at 36.0% chord	
All		C1/Cd 53.3	
Top 05			
Top 10	2		
Top 20			


12. Powerplant \rightarrow List of engine candidates to fulfill the power requirement

List	of available engines in the engine	database (161.147 k	W +0%/+50%)
	Engine Model	Power (MxC)	Mass
	-	kW	kg
00	Lycoming IO 540-AB1A5	171.511 (6.0%)	200.0
01	Lycoming O 540-J3C5D	175.239 (8.0%)	176.0
02	Lycoming LO 360-A1H6	180.099 (10.5%)	297.9
03	Lycoming IO 540-C4D5D	184.000 (12.4%)	186.8
04	Lycoming O 540-A1A	186.425 (13.6%)	183.7
05	Lycoming O 540-A1A5	186.425 (13.6%)	183.7
06	Lycoming O 540-A1B5	186.425 (13.6%)	184.1
07	Lycoming 0 540-A1C5	186.425 (13.6%)	184.1
08	Lycoming O 540-A1D	186.425 (13.6%)	184.1
09	Lycoming O 540-A1D5	186.425 (13.6%)	184.1
10	Lycoming O 540-A2B	186.425 (13.6%)	183.7
11	Lycoming 0 540-A4A5	186.425 (13.6%)	183.7
10	Lycoming O 540-MR5	186 AD5 (13 64)	19/ 1

• Generates a list of engine candidates to power the aircraft based on the computed power requirement (Design Level 1).



13. Multiple Runs \rightarrow Sequential computations performed to identify the optimal configuration

- Automatically runs a large number of different configurations by varying selected input parameters
- Defines constraint limits; a result is considered feasible if all defined constraints are satisfied (e.g., empty weight exceeds a minimum threshold)
- Automatically sorts the results
- Displays results in tabular format, automatically copied to the clipboard for easy pasting into external documents
- Generates a .csv file and saves it in a dedicated folder within the aircraft dataset
- Each configuration can be automatically saved under a specific name for further analysis in the Version Comparator
- The Version Comparator enables graphical visualization of results and allows quick identification of the optimal value for a geometric parameter

14. 3D Geometry \rightarrow Unique set of features to optimize geometry

15. Design constraints \rightarrow Automatically controls results to meet different types of constraints

- Checks constraints due to the selected regulation:
 - o Configuration
 - \circ Speed
 - o Mass
 - $\circ \quad \text{Load factors} \quad$
- Imposes some limits in the size of components (the wing area must be higher than 8.5 m² to provide enough surface for solar cells for example)

Integrated expertise

16. Level of stability \rightarrow Provides the user some tips to improve stability

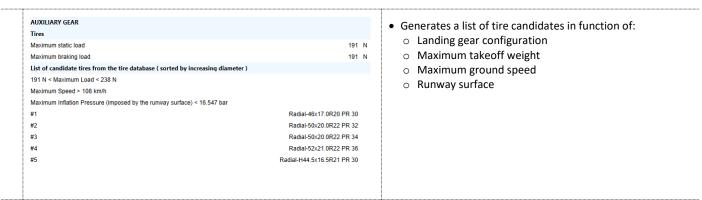
Expertise: Rolling moment due to roll rate derivative (C1p) [/rad] C1p (-0.567) is in the range of historical values -0.535 to -0.448 Expertise: Yawing moment due to roll rate derivative (Cnp) [/rad] Cnp (-0.015) is out of the range of historical values -0.045 to -0.022 Cnp To get a more negative value (do the opposite to get a more positive value): Cnp - Increase wing aspect ratio Cnp - Increase wing taper ratio Cnp - Nove the vertical tail upwards Cnp - Move the winglets upwards Cnp	 Computes all stability derivatives Informs the user if there is instability Checks the level of stability is within limits (based on historical values) Gives the user some tips to improve stability if not within the limits
--	---

17. Tracks changes \rightarrow Displays only results that have changed from one run to the next

Airplane - Wetted Area	m ²	17.326	17.934	3.5 %	 Displays all results that have changed between two runs
Wing - Area	m ²	3.462	3.655	5.6 %	 Initial value
Wing - Wetted Area	m ²	6.552	6.996	6.8 %	
Horizontal Tail - Area	m ²	0.758	0.800	5.6 %	
Horizontal Tail - Wetted Area	m ²	1.499	1.485	-0.9 %	 New value
Vertical Tail - Area	m ²	0.377	0.398	5.6 %	
/ertical Tail - Wetted Area	m ²	0.637	0.814	27.7 %	 Change
Mass - Maximum takeoff	kg	259.9	266.2	2.4 %	
Mass - Empty	kg	167.1	173.2	3.6 %	
Mass - Glider	kg	90.5	96.6	6.7 %	 Very powerful to understand the real impact of one
Mass - Flight	kg	259.9	266.2	2.4 %	
Mass - Fuel	kg	12.8	13.0	1.8 %	modification made on the plane
Mass - Wing	kg	18.7	23.5	25.3 %	•
Mass - Horizontal Tail	kg	2.0	2.1	6.0 %	
Mass - Fuselage	kg	22.6	22.7	0.3 %	
Cruise - Flight speed	km/h	363	361	-0.5 %	
Cruise - Power, required	kW	58.084	58.113	0.1 %	
Cruise - Propeller installation efficiency	%	92.0	92.1	0.1 %	
Cruise - Drag - Total	N	572	580	1.4 %	
Cruise - Drag - Zero lift	N	555	566	2.1 %	
Cruise - Drag - Induced	N	17	13	-21.6 %	
Cruise - Drag coefficient - Total	-	0.02712	0.02611	-3.7 %	
Cruise - Drag coefficient - Zero lift	-	0.02631	0.02552	-3.0 %	
Cruise - Drag coefficient - Induced	-	0.00079	0.00059	-25.6 %	
Cruise - Friction Coefficient	-	0.00523	0.00517	-1.1 %	
Cruise - Induced drag factor (airplane)	-	0.875	0.857	-2.0 %	
Best Rate of Climb - Rate of climb	m/s	14.127	13.909	-1.5 %	
Best Rate of Climb - Power, required	kW	50.079	50.087	0.0 %	
Takeoff - Takeoff run	m	158	159	0.5 %	
Landing - Landing run	m	234	229	-2.1 %	
Stall - Lift coefficient (Maximum)	-	1.71	1.67	-2.4 %	
Aerodynamic Center - X	m	1.584	1.551	-2.0 %	
Aerodynamic Center - Z	m	-0.047	-0.026	-45.0 %	
Center of Gravity - X (Default Value)	m	1.515	1.490	-1.6 %	
Center of Gravity - Z (Default Value)	m	-0.047	-0.026	-45.0 %	

18. Analyzes the results \rightarrow Displays qualitative analysis of results

<pre>Messages (MARDEG) - (6) Messages Versions (LANDEG) - (6) Messages (LANDEG) - (6) Message</pre>	 Displays warning messages, if any Displays information messages, if any Provides information about: The compliance with the regulation The CG position The level of stability The way some parameters were computed (propeller efficiency, Oswald efficiency factor)
--	--



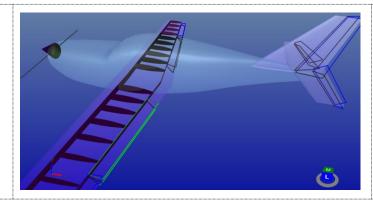
19. Checks compliance with regulation \rightarrow Checks and informs if out of the limits of regulation

		0	1	2	3	4	5	6	7	8	9	10	11	1	2 1	3	
		CS-LSA	CS-VLA	CS-23N	CS-23U	CS-23A	CS-23C	CS-25	FAR-103	FAR-23N	FAR-23U	FAR-23A	FAR-23C	548-25		USMI	
	25	13	13	16		16	15	11	5	16	16	16	15	1	1 1		<<< Number of requirements for each regulation
General	Maximum fuel capacity								x						Т	Т	
	Number of engines	х	х	х	х	х	х	x		х	х	х	х		()	х	
	Maximum number of occupants	х	x	х	х	х	х		х	х	х	x	х				
	Type of engine	×	x	x	x	х	x	x		x	x	x	x		(_	
	Maximum operating altitude			х	х	х	х			х	х	X	х	L			
Mass	Maximum takeoff weight	_	_	_	_	_	_	_	_	_	_	-	_	-	-	-	
Mass	Maximum takeoff weight Minimum weight	×	×	x	x	x	x	-	-	x	x	x	x	⊢		x	
	Empty weight	-	×	×	×	×	×	-	×	x	×	×	×	⊢	+	x	
	Useful weight	×	-	-	-	-	-	-		-	-	+	+	⊢	+	-	
	Outline Weight	^	-	-	_		-		-		_	-	-	-	-	-	
Speed	Vs			x	x	x	x			x	x	x	x	Г	Т	T	Stall speed determined by certification flight tests
	Vsn	×	×						×					t	+		Stall speed or minimum flight speed in landing configuration
	V ₅₁		-								\vdash	-		t	+	+	Stall speed or minimum steady flight speed in a specific configu
	Vr	x	×	x	x	x	x	x		x	x	x	x	١,		x	Design flap speed
	Vc	×	×	×	×	×	x	×		×	×	×	×	١,		x	Design cruise speed
	Vo	x	x	x	x	x	x	x		x	x	x	x	٦,		x	Design diving speed
	Vn								×			\square		t	t	T	Maximum speed in level flight with maximum continuous power
		_	_	_	_		_		_	_	_			_		_	
Load factors	ni	×	×	х	х	х	х	×		х	х	x	x		()	ĸ	Positive maneuvering load factor
	n _{tel}																Landing load factor
		_	_	_	_	_	_	_	_	_	_	_		_		_	
Takeoff speed	Va			х	х	х	x	x		x	х	x	×	×	C 🗆		Rotation speed
	V _{LOF}							×							<		Lift off speed, speed at which the airplane first becomes airbor
	Vto			х	×	х	х	x		х	x	x	×		ι –	Т	Final takeoff speed
	VCLAEO			х	х	х	х	×		х	х	x	×		()	x	Climb speed, all engine operative
	V _{15m}	×	×	x	×	х				х	×	x				x	Speed above the 15m (50ft) obstacle
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Climb	Ve	×	×												1	1	Rate of climb
Landing	V _{Ref}	x	×	x	x	x	x	×		x	×	x	x		1	×	Reference landing approach speed

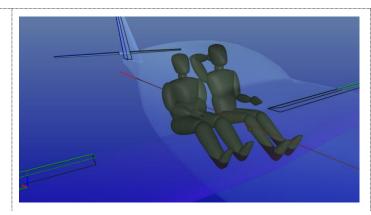
- Checks compliance with regulation regarding:
 - $\circ~$ Maximum fuel capacity
 - $\circ~$ Number of engines
 - Maximum number of occupants
 - $\circ~$ Type of engine
 - $\circ~$ Maximum operating altitude
 - o Mass
 - o Speed
 - $\circ~$ Load factors
 - o Takeoff, climb and landing performance

20. Tire selection \rightarrow Selects tire size in function of ground run operation

21. Airfoil selection \rightarrow Selects the best airfoil for the specified flight condition


 Selection among 		Airfoil Candidates [10/876] @ RN# 2 000 000 @ Cl 0.20 - (Wing (@ Root Chord))	· Concentration of list of sinfail condidates in function of
Canard Surface		USA-27 Mx thickness 11.2% at 25.9% chord	 Generates a list of airfoil candidates in function of:
Conventional Airplane	v	Mx camber 5.1% at 36.0% chord	
Flying Wing		C1/Cd 68.0 Martin Hepperle-mh26	 Type of airplane
Human Power		Mx thickness 11.0% at 42.0% chord	
Low Reynolds Number		Mx camber 1.5% at 41.0% chord C1/Cd 60.9	 Flight conditions
Other		Martin Hepperle-mh27	 Some geometric parameters:
Sailplane		Mx thickness 12.0% at 43.0% chord Mx camber 1.5% at 41.0% chord	 Some geometric parameters:
Sailplane (RC)		C1/Cd 57.7	Maximum relative thickness
Tailless		NASA-SC(2)0606 Mx thickness 6.0% at 34.0% chord	 Maximum relative thickness
Winglet		Mx camber 0.4% at 77.0% chord	 Maximum camber
 Selection on 		C1/Cd 55.4 Rolf Grisberger-14A	- Maximum camber
Mn Drag Coefficient		Mx thickness 7.0% at 31.0% chord	 Some aerodynamic parameters:
Mn Pitching Moment		Mx camber 1.4% at 36.0% chord C1/Cd 54.6	o some aerodynamic parameters.
Mx Camber Mx Lift Coefficient	✓	NACA-66209	 Minimum drag coefficient
Mx Lift Coefficient Mx Relative Thickness		Mx thickness 9.0% at 46.0% chord Mx camber 1.1% at 50.0% chord	
Mx Relative Thickness		C1/Cd 54.5 Martin Hepperle-mh33	 Maximum lift coefficient
Sorting Option		Mx thickness 7.3% at 29.0% chord	Maximum integerielent
Sorting Option	Glide Ratio @ Design Lift Coefficient	Mx camber 1.1% at 42.0% chord C1/Cd 54.5	Minimum pitching moment
 Flight Conditions 		Gottingen-goe364	- 5
Is Given	1	Mx thickness 10.8% at 28.0% chord Mx camber 6.5% at 33.0% chord	 The candidates are sorted according to predefined criteria
Ċ	0.20 • -	C1/Cd 53.8	5 1
RN	2 000 000 🗢 -	Drela-AG47c 03f Mx thickness 5.1% at 23.0% chord	 Maximum glide ratio
 Mx Lift Coefficient 		Mx camber 2.0% at 46.0% chord C1/Cd 53.4	 Maximum lift coefficient
Mn	1.00 🗢 -	Martin Hepperle-mh20	o Maximum lift coefficient
4 Output		Mx thickness 9.0% at 31.0% chord Mx camber 2.0% at 36.0% chord	 Zero angle of attack pitching moment
All		C1/Cd 53.3	
Top 05			 Minimum drag coefficient
Top 10	v		
Top 20			 Zero lift angle of attack

22. Comparative analysis \rightarrow Compares the airplane with its competitors on different criteria


QUALITY		• The current airplane is compared with other airplanes take
Symbols		from the database. The analysis focuses on:
+ : best plane		
- : Worst plane		 Aerodynamics
AERODYNAMICS		 Fuel consumption
Friction coefficients (-) - Cruise		 C02 emissions
0.00167 0 0.04659 + -	0.00515 - Cessna-210-G PIUMA ALMERICO-12-000ELECTR	 Mass Performance
Aerodynamic efficiency [Cf(limit) / Cf] (%) - Cruise		
8.9 209.2 + -	62.9 % Cessna-210-G PIUMA ALMERICO-12-000ELECTR	 The best airplane is displayed as well as the worst one The current airplane is located between the two limits
Flat plate area perpendicular to flow (m ²) - Cruise		
0.051 -0 1.719	0.076 m²	
+	0CEA 311-02-01	
	Edgley-Optica-01*	
Flat plate width perpendicular to flow (m) - Cruise		
0.226 0 1.311	0.276 m	
+	0CEA 311-02-01	
	Edgley-Optica-01*	
FUEL		
Fuel (I/100km) - Cruise		
4.9 0 83.6	7.3 -	
+	Michel Colomban-MC 100-0b	
	Cessna-208 F-Caravan	
Fuel (I/100km/100kg) - Cruise		
N/A	9.1 -	

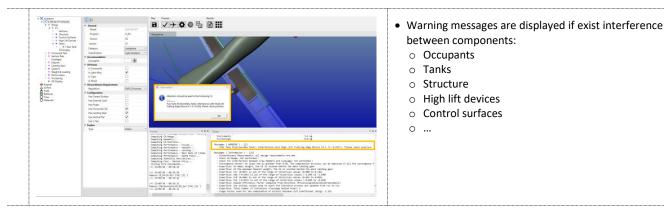
23. Aircraft Structure \rightarrow Displays structural parts to check for interference between components

- The structure is generated automatically
- Some elements of the structure are represented, such as:
 Spars
 - o Ribs
 - Frames
 - Stringers
- The representation is mainly used to check the absence of interference between components, between the structure and the control surfaces, between the structure and the high lift devices...

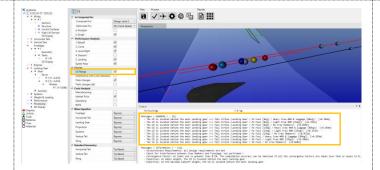
24. Occupants \rightarrow Displays occupants to check cabin volume

- The occupants are generated automatically
- Controls on measurements:
 - Height
 - o Fatness
 - Shoulder breath
- Controls position and attitude
- Checks interference with the fuselage
- Checks clearance with fuselage
- Checks minimum cockpit size to fit the occupants
- Lists anthropometric characteristics
- Puts in default sitting and standing position

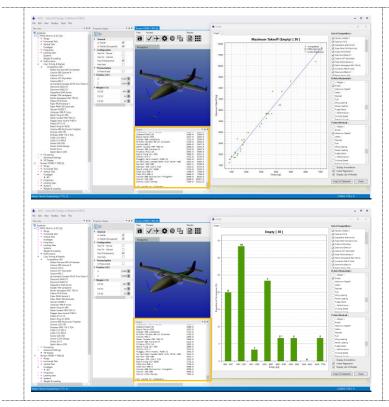
 For passenger transport aircraft, the seat layout can be quickly determined by specifying the row spacing and the number of seats per row. The seat is modeled by its envelope, that is the maximum volume it occupies when moving from the upright to the reclined position. This approach allows for the cabin space to be sized according to the desired comfort level, while ensuring there are no interferences between seats and passengers, regardless of the seat's position
 The seat dimensions are provided for three comfort classes (Deluxe, Normal, and Economy) and for three configuration types (single, double, and triple)
 In cargo aircraft, a range of standard container types can be selected, including LD-2 through LD-8 units, along with standard pallets.


25. Systems \rightarrow Displays systems to check the available volume reserved for them

Wings	 General 		
 V-Tails Fuselages 	Description	Processor	
 Engines 	Is Visible	v	
 Landing Gear Main 	Opacity	100 🗢	-
 Main Auxiliary 	4 Envelope		
 Systems 	Shape	Prism	~
Control Fuel	Height	0.290 🚭	m
Electric Avionics	Length	0.220 🖨	m
 # 1 Gimball Camera 	Width	0.450 🗢	m
 # 2 Gimball Mount # 3 Antenna I 	 Position (RI) 		
# 4 Antenna I Mount	CG (X)	1.351 🗢	m
 # 5 Processor # 6 Payload Bay 	CG (Y)	0.000 🗢	m
# 7 BUC # # 8 SSPA	CG (Z)	0.102 🚭	m
 # 8 SSPA # 9 Modem 	 Rotation (RI) 		
# 10 Antenna II	OX	0.0 🗢	•
 Weight & Loading <1> Performance 	OY	0.0	•
Stall Cruise	oz	0.0	•
Takeoff	Specifications		
Landing Maximum Rate of Climb	PC	0.000 🗢	kW
 Processing 	Weight	19.0 🗢	kg
Display			


- The user may define unlimited number of systems
- Each system is defined with:
 - An envelope of different shape (prism, cylinder, cone, sphere) and size
 - Power consumption
 - o Mass
- Air conditioning takes into account the total thermal load (heating and cooling) to calculate the power and energy required to operate the system.

26. Checks interference between components \rightarrow Checks and warns if there is interference

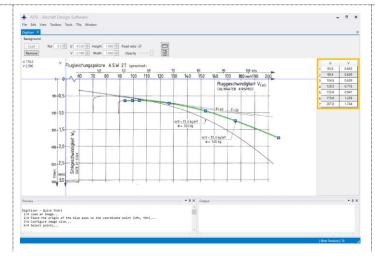

27. Checks CG Range \rightarrow Checks the CG position for all load cases

- Checks CG position for all load cases. The CG must be between the limits. If not, warning messages are displayed
- Displays the CG of each component of the airplane (light blue)
- Displays on the mean aerodynamic chord:
 - $\circ~$ The most forward position (red)
 - $\circ~$ The most aft position, neutral point (red)
 - $\circ~$ The true airplane CG (blue)
 - $\circ~$ The default airplane CG (yellow)

28. Visual Competitor Analysis \rightarrow Select and compare competitors graphically

- Competitors are selected from various categories
- Graphs can be generated either as scatter plots or histograms
- The values displayed in the graph are also listed in the Output window
- More than 70 parameters can be plotted
- Charts can be copied and included in reports
- A linear regression line can be displayed on the chart, with its equation shown in the Output window
- Annotations (model names) can be displayed on the chart
- The technical specifications associated with each aircraft can be displayed in the Output window: engine model, number of engines, propeller type, wing type, high-lift device type, landing gear type

29. Visual Version Analysis \rightarrow Select and compare versions graphically


Unlike a competitor, a version is a variant of the same project. The **multiple run** feature can automatically generate a large number of versions, whose characteristics can be analyzed graphically in the **version comparator**.

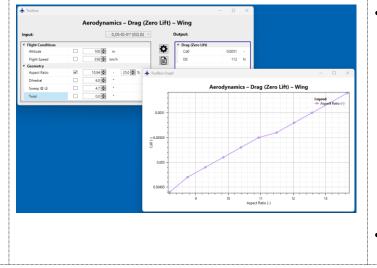
It provides the same features as for competitors, except for:

• A polynomial regression curve can be displayed on the chart, with its equation shown in the Output window

Toolbox

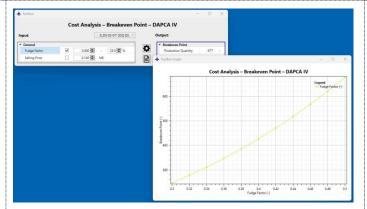
30. Digitizer \rightarrow Digitizes any curve to retrieve the coordinates of the points that were used to draw it

- Generates a list of points that can be copied/pasted in any spreadsheet or tables in ADS
- In reverse engineering the analysis of the coordinates of a glide polar obtained by digitalization will make it possible to know at any speed the zero lift drag coefficient and the Oswald efficiency factor


31. Glide Polar Analyzer \rightarrow Analyzes the drag polar of a (motor)glider

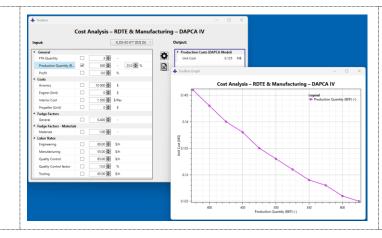
		SR(V)	
	V (km/h)	SR (m/s)	
1	90	-0.65798	^
2	91	-0.65526	
3	92	-0.65265	
4	93	-0.65015	
5	94	-0.64778	7
6	95	-0.64556	
7	96	-0.6435	1
8	97	-0.64162	
9	98	-0.63993	Sort by V
10	99	-0.63845	
11	100	-0.63719	Interpolate
Area (n	n²) Aspect Ratio (-)	WL (kg/m²) Altitude (r	m) Compute
9(25.00	55.6 🗘 30	0 🗘 Show Graph

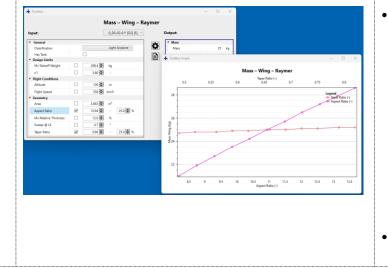
- Computes at every speed of the glide polar, from the lower to the upper speed, every 1 km/h, the following information:
 - $\circ~$ Total drag
 - $\circ \ \ \text{Glide ratio}$
 - $\circ \ \ \text{Lift coefficient}$
 - o Drag coefficient
 - $\circ~$ Zero lift drag coefficient
 - $\circ~$ Induced drag coefficient
 - Osswald efficiency factor


Tools

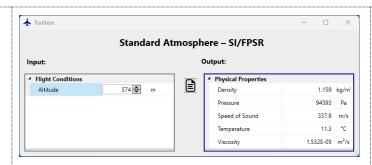
32. Aerodynamics / Zero Lift Drag \rightarrow Sensitivity analysis in drag generation

- Performs a sensitivity analysis and identify the predominant parameters in drag generation, or which parameter should be modified as a priority to minimize drag. The analysis can be done on the following components:
 - o Airplane
 - \circ Wing
 - o Empennages
 - Fuselage
 - \circ Landing gear
 - Floats
 - Tailboom
 - Engine
 - Nacelle
 - Miscellaneous
- A technical note presents the equations used in the computation of drag and lists the references.


33. Cost Analysis / Breakeven Point \rightarrow Sensitivity analysis in breakeven point determination


• Performs a sensitivity analysis in the determination of the breakeven point.

34. Cost Analysis / RDTE & Manufacturing → Sensitivity analysis on RDTE & manufacturing costs


35. Mass \rightarrow Sensitivity analysis on mass estimation

- Performs a sensitivity analysis and identify the predominant parameters which influence RDTE & manufacturing costs, or which parameter should be modified as a priority to minimize the cost.
- A technical note presents the equations used and lists the references.

- Performs a sensitivity analysis and identify the predominant parameters in mass estimation, or which parameter should be modified as a priority to minimize the mass. The analysis can be done on the following components:
 - \circ Wing
 - o Empennages
 - Fuselage
 - $\circ~$ Landing gear
 - o Floats
 - Tailboom
 - Engine
 - NacelleSystems
 - Furnishing
- A technical note presents the equations used in the computation of mass and lists the references.

36. Standard Atmosphere \rightarrow Lists the characteristics of the standard atmosphere at a given altitude

• Lists the characteristics of the standard atmosphere at a given altitude

37. Unit Converter SI << >> FPSR

Toolbox	>	K Toolbox	
Converter –	SI >> FPSR	Conver	ter – FPSR >> SI
▲ SI		✓ FPSR	
Value	1.000 🗢 -	Value	1.000 🗢 -
✓ FPSR		✓ SI	
Area	10.76 ft ²	Area	0.093 m
Content	0.264 USga	ol Content	3.785 I
Distance (1)	0.54 nm	Distance (1)	1.852 kn
Distance (2)	0.622 sm	Distance (2)	1.609 kn
Length	3.281 ft	Length	0.305 m
Mass	2.205 lb	Mass	0.454 kg
Power	1.341 hp	Power	0.746 kV
Speed (1)	0.54 kt	Speed (1)	1.852 km
Speed (2)	0.622 mph	Speed (2)	1.609 km
Wing Loading	0.205 lb/ft	2 Wing Loading	4.882 kg/

• The unit converter allows for the conversion of major physical quantities between the SI system and the FPSR system, in both directions

Database

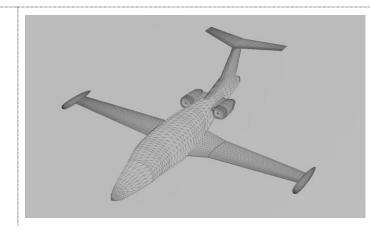
38. Database \rightarrow Airplanes, Engines, Airfoils, Fuels, Batteries, Tires, Materials

🛧 Open Airplane		- 0	×	 The airplane database is divided in different categories: Light Airplane
ist of Classification Light Airplane Light Business Light Transport Ultralight Unmanned Aircraft Very Light Jet	0_A 01 M 0_A 01 PA 0_A 01 S 0_A 02 S 0_A 02 S_2 0_Canadair CL415 01 0_DS 01 01 0_DS 02 01 0_DS 02 01_6 0_DS 02 01_MR 0_DS 02 01A		~	 Light Airplane Light Business Light Transport Ultralight Unmanned Aircraft Very Light Jet For each aircraft in the database: General information Geometry Systems Mass Performance The database is continuously updated with new airplanes The user may updated it himself with his own data
🛧 Open Engine		- 0	×	The engine database is divided in different categories:
List of engine type Electric Piston Turbofan Turbojet Turbopropeller	Allison 250 C20B Allison 250 C30B Austro Engine E4 Austro Engine E4P Bourget 01 CF6 80C2B1F CF6 80C2B5F CFM56 5A1 CFM56 5A1 CFM56 5A3 CFM56 5B4		~	 Electric Piston Turbofan Turbojet Turbopropeller For each engine in the database: General information Geometry Systems Performance The database is continuously updated with new engines The user may updated it himself with his own data
🛧 Open Airfoil	•	- 0	×	• The airfoil database is divided in different categories. Amore them:
Series Eppler Gottingen GU Hollom Lockheed Martin Hepperle NACA NASA OtsA Lockheed NACA NASA Lockheet Gottingen Gottingen Lockheet Lockheet Lockhet	0001 0002 0005 0006 0007 0008 0008 34 0008 34 000834 0009 0009_TE 0010		~	 Eppler NACA NASA Worthmann For each airfoil in the database: General information Airfoil coordinates Aerodynamic characteristics for different Reynolds Number and Mach Number The database is continuously updated with new airfoils The user may updated it himself with his own data

48 good reasons to adopt ADS

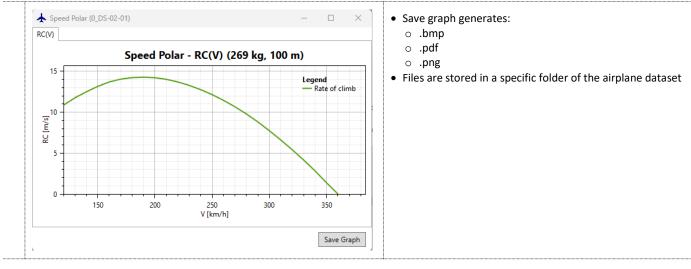
Airplanes 1 0_DS-02-01* [D2] [S]	2↓		• For each fuel in the fuel database:
Engines Airfoils	 General 		 General information
Fuels	1. Reference	AVGAS-100LL	 Physical and chemical properties
AVGAS-100LL Batteries	2. Type	AVGAS	 The user may updated it himself
1 Lipo-30000mAh 222V 25C 6S1P	3. Grade	100LL	
	 Properties 		
Type III-15.00-12 PR 14	Density	0.721 🗢 kg/l	
1 Aluminum Alloys-2017	Specific Energy	12 222 🗢 W.h/Kg	
Airplanes	2 ↓		• For each battery in the battery database:
ion Engines ▲ Airfoils	 General 		 General information
▲ Fuels	1. Reference	Lipo-30000mAh 222V 25C 6S1P	 Electrical properties
AVGAS-100LL Batteries	2. Type	Lipo	 The user may updated it himself
1 Lipo-30000mAh 222V 25C 6S1P	3. Subtype Electrical Properties	30000mAh 222V 25C 6S1P	
O Tires 1 Type III-15.00-12 PR 14	Electrical Properties Capacity Rate	25.0 🗢 C	
Materials Aluminum Alloys-2017	Capacity Rate (Mx)	25.0 🗢 C	
C Aluminum Alloys-2017	Specific Energy	23.0 ♥ C 666 ♥ W.h/Kg	
		400 🗢 W/Kg	
	Specific Power	400 🔽 W/Kg	
X Airplanes			
1 0_DS-02-01* [D2] [S]			• For each tire in the tire database:
i Engines ▲ Airfoils	General	T	 General information
♦ Fuels	1. Reference 2. Type	Type III-15.00-12 PR 14 Type III	 Application rating
1 AVGAS-100LL Batteries	3. Size	15.00-12 PR 14	 Inflated dimensions
1 Lipo-30000mAh 222V 25C 6S1P O Tires	Application Rating	15.00-12 PK 14	 Rim Description
1 Type III-15.00-12 PR 14	Rated Inflation	4.482 🗢 bar	• The user may updated it himself
Materials 1 Aluminum Alloys-2017	Rated Load	56 492 🗢 N	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Rated Speed	257 🔷 km/h	
	 Inflated Dimensions 		
	Diameter (Mn)	898 🗢 mm	
	Diameter (Mx)	922 🗢 mm	
	Width (Mn)	354 🗢 mm	
	Width (Mx)	373 🗢 mm	
	 Miscellaneous 		
	Flat Tire Radius	213 🗢 mm	
	Ply Rating	14 🗢 -	
	Rim Description Diameter	205	
		305 🗢 mm	
	Width between flanges	279 🗢 mm	
Airplanes			For each material in the material database:
1 0_DS-02-01* [D2] [S] Engines			 General information
Airfoils	 General 1. Reference 	Aluminum Alloys-2017	 Mechanical properties
Fuels	2. Group	Aluminum Alloys	 Strength properties
Batteries	3. Grade	2017	
1 Lipo-30000mAh 222V 25C 6S1P	Mechanical Properties		The user may updated it himself
Type III-15.00-12 PR 14	Density	2 800 🗢 kg/m³	
Materials	Poisson's Ratio	0.3300 🜩 -	
	Shear Modulus	27 000 🗢 N/mm ²	
	Young's Modulus	72 500 🜩 N/mm²	
	Strength Properties Tancila Strength	427 🗢 N/mm ²	
	Tensile Strength		
	Yield Strength	276 🜩 N/mm²	

Export Functions


39. Airplane Report \rightarrow Airplane report available in .doc, .txt, .csv file format

🛓 Airplane Re												
				0	DS-02	2-01 ³	ł					
Stability	Cost-Mark	et Price	Cruise	Best Rate of	Climb	Takeoff	Landin	g Sta	II (Quality	Statistic	s
Summary	Wing	Horizor	tal Tail	Vertical Tail	Fuselage	Pow	erplant	Landing	g Gear	Syste	ems N	lass
DIMENSION	S, EXTERNA	l:										
Model		_			_					0DS-02-	01*	
Type:			Сору						L	ight Airpla	ane	
Structure			Copy as csv			Composite & Light Alloy						
Powerplant			CopyAll				1 Rota	ax-Bomba	rdier Ro	tax 912-U	JLS	
Length overa			Save							4.9	962 m	
Height overal			Save as	C5V						1.8	353 m	
Wing span			SaveAll							6.3	360 m	
Wing aspect	ratio		Save as							1	0.9 -	
Fuselage len	gth	_	SaveAll	as Word						4.9	930 m	
Fuselage Mx	diameter									0.6	64 m	
Tailplane spa	n									1.7	15 m	
Wheel track										1.1	109 m	
Wheel base										3.8	398 m	
AREAS												
Airplane wett	ed area									18.0)12 m²	
Wing, true										3.6	697 m²	
Wing, project	ed									3.6	677 m²	
Ailerons (tota	al)									0.2	223 m²	
Trailing-edge	flaps (total)								0.3	341 m²	
Horizontal tai	l, projected									0.8	809 m²	
Vertical tail, p	rojected									0.4	103 m²	
Elevator (tota	al)									0.2	28 m²	
Rudder (tota	1)									0.1	102 m²	
WEIGHTS AN	ID LOADIN	GS										
Maximum tak	eoff weight									26	8.7 kg	
Empty weight										17	5.6 kg	
Mx fuel weigh	nt									1	3.1 kg	
Mx landing w										26	8.7 kg	
	-									-	· · -	

• Airplane report ready to be published


- Airplane report may be:
 - $\circ~$ Copied in the clipboard
 - Copied as csv
 - Saved as doc
 - Saved as txt
 - Saved as csv
- One file for the whole document
- One file for a specific item
- Files are stored in a specific folder of the airplane dataset
- File path is displayed in the process window

40. 3D-Geometry \rightarrow 3D Geometry may be exported in .stl file format

- One file for the whole geometry
- One file for each component (wing, fuselage...)
- Files are stored in a specific folder of the airplane dataset

41. Graphs \rightarrow Graphs are saved in .bmp, .pdf, .png file format

42. Tables \rightarrow Tables are saved in .csv file format

		dx(1)			
		u.(1)			_
1	RC		v		
1	10.87		120		^
2	11.764		130		
3	12.501		140		
4	13.166		150		
5	13.706		160		
6	14.053		170		
7	14.237		180		
8	14.298		190		
9	14.225		200		
10	14.028		210		
	<< <	1 / 1	> >>	Show G	

- Save table generates .csv file format:
- Files are stored in a specific folder of the airplane dataset
- File path is displayed in the process window

Customized software

43. Add new modules \rightarrow Great flexibility of the software

Thanks to its modular architecture, the software can be easily extended by adding new modules to meet specific customer requirements. The following features have been implemented in ADS in response to specific requests:

- VTOL (Vertical Take-Off and Landing)
- STOL (Short Take-Off and Landing)
- Seaplane
- Solar-powered aircraft
- Airliners
- Ducted fan systems

44. Frequent new releases \rightarrow Frequent new releases demonstrate OAD's high level of responsiveness

- As soon as an issue is reported, OAD makes every effort to resolve it as quickly as possible
- When a customer requests a new feature, OAD evaluates the request and, when feasible, includes it in the next software release.
- Customer satisfaction is OAD's top priority.

Technical assistance

45. Getting started with the software \rightarrow OAD assists the customer getting started with ADS

- Online training sessions are available to assist users during their initial use of the software.
- OAD provides expert support to review the user's work until they feel confident using the software independently

46. Technical documentation \rightarrow Technical notes and videos accessible directly from the software

_TN02-051 – LS Standard Geometry In order to make easier some aerodynamic calculation: converted to simple trapezoidal planform. This is done		 Concise technical notes provide explanations on ma Short videos show how to complete a task Many additional information displayed on the user in regarding: Historical values
List of methods:	according to specific methods.	• Reference
Wing Tails Trapezoidal x x Tip Based x x ESDU x x Airbus x x Boeing x x		o Theory
Trapezoidal		
	he method consists to extend the lines of he leading edge until it meets the centerline of the fuselage. And to do the same for the railing edge. i, computed from the contour formed by the ed lines for all types of aircraft	
Tip Based		
	he method consists to define the equivalent wing planform with the same area and the ame wing tip, we computed from the contour formed by the ed lines for all types of aircraft wet by default	
ESDU		
The method to define the equivalent wing planform is (Engineering Sciences Data Unit, https://www.esdu.com		

47. Technical support \rightarrow OAD may assist the customer at any time

- Users may contact OAD at any time for clarification regarding the algorithms used to solve a problem or to better understand the results provided by the software.
- Users may also request OAD to carry out specific tasks as part of a consulting service

References

48. ADS for everyone → Serving customers from all sectors, including small, medium, and large companies, as well as individuals and universities

