

5. Modélisation

5.1 Introduction

Quelle propulsion utiliser ? Quel moteur ? Quelle hélice ? Quelle doit être la surface de l'aile et des empennages pour assurer à la fois une sustentation suffisante et une bonne stabilité ? Quelle sera la masse à vide de l'appareil ? Quelle sera sa qualité aérodynamique ? Quelles seront ses performances pour les différentes phases de vol ? Est-il possible de respecter les exigences du cahier des charges ? Comment satisfaire les contraintes liées à la réglementation ? Faut-il envisager une configuration avec un ou deux moteurs ... ? Les questions sont multiples.

Le module « Modélisation » sera utilisé pour répondre de façon efficace et rapide à l'ensemble de ces questions.

PCA2000 traite la modélisation en 3 phases :

- 1. <u>Phase 1 ou Modélisation de niveau 1</u> : Sur base d'un nombre limité de données d'entrée le modèle détermine la géométrie de l'appareil et la puissance nécessaire pour atteindre au point d'adaptation (ou phase de vol principale) les performances voulues.
- 2. <u>Phase 2 ou Modélisation de niveau 2</u>: Les données d'entrées sont plus précises et plus nombreuses que celles nécessaires pour réaliser la phase précédente. L'utilisateur choisit certains composants dans des catalogues de produits (moteur, profils de surface portante, pneumatiques, …). La géométrie de l'appareil ainsi que son devis de masse sont actualisés sur base de ces nouvelles données d'entrée. Les performances sont calculées pour différentes phases de vol : le décollage, la montée et la croisière. Les résultats sont affichés sous forme de tableaux et de graphiques qu'il est très facile d'analyser.
- 3. <u>Phase 3 ou Modélisation de niveau 3</u> : Contrairement aux 2 niveaux de modélisation précédents, la modélisation de niveau 3 détermine les performances de l'appareil pour une masse de vol et une géométrie données. L'objectif de cette modélisation est triple :
 - a. Etudier les performances (décollage, montée et croisière) d'un appareil donné pour différentes masses de vol.
 - b. Modéliser les effets de modifications apportées sur un appareil donné (remplacement du train fixe par un train rentrant, modification de la surface de l'aile, remotorisation, modification des qualités aérodynamiques, ...) de façon à visualiser les effets de la modification sur l'ensemble du système.
 - c. Définir des bornes ou des limites au-delà desquelles le (nouveau) développement ne se justifierait plus. Pouvoir chiffrer par exemple les effets d'une dérive du devis de masse sur les performances générales de l'appareil.

5.2 Table des matières

5.	MODÉLISATION	1
5.1	Introduction	1
5.2	Table des matières	2
5.3 5.3.1 5.3.2 5.3.3 5.3.4	Modélisation de niveau 1 Description Données d'entrées Calculs Résultats	3 5 .12 .13
5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5	Modélisation de niveau 2 Description Remarques Données d'entrées Calculs Résultats	16 16 18 19 29 30
5.5 5.5.1 5.5.2 5.5.3 5.5.4	Modélisation de niveau 3 Description Remarques Données d'entrées Calculs	39 39 41 42 51
0.0.0	RESUIIDIS	52

5.3 Modélisation de niveau 1

5.3.1 <u>Description</u>

Pour accéder au module « Modélisation » **cliquez** sur [**Modélisation**], [**Avions**] puis [**Niveau** 1] de la barre de menus de la fenêtre principale. Vous pouvez également y accéder directement en cliquant sur de la barre d'outils verticale.

Figure 5.1 : Modélisation de niveau 1 (Général)

Si vous avez choisi d'accéder au module « Modélisation » via le bouton de commande vous serez peut être amené à préciser le niveau de modélisation souhaité. Ceci se fait via la barre d'état de la fenêtre principale. **Cliquez** à l'endroit indiqué jusqu'à ce que le chiffre affiché soit 1.

Niveau de modélisation

Figure 5.2 : Barre d'état de la fenêtre principale

L'acquisition des données d'entrée se fait via 10 fenêtres spécifiques :

- 1. Généralités
- 2. Aile
- 3. Empennages
- 4. Fuselage
- 5. Moteur
- 6. Hélice
- 7. Performances
- 8. Masses
- 9. Aérodynamique
- 10. Options

Chaque fenêtre contient un ensemble de champs que l'utilisateur doit obligatoirement compléter pour pouvoir effectuer la modélisation. Les **champs grisés** sont inaccessibles et réservés à une modélisation d'un niveau différent de celui en cours.

%

Pressez à tout instant sur la touche F1 pour accéder à l'aide contextuelle.

%

Pour naviguer entre les contrôles d'une fenêtre, utilisez la **touche de tabulation**.

Pour naviguer entre les fenêtres, utilisez les touches	Suivant > OU	< Précédent	ou le n	nenu c	de la	а
barre d'outils verticale.						

5.3.2 Données d'entrées

5.3.2.1 <u>Généralités</u>

Figure 5.3 : Modélisation de niveau 1 (Général)

5.3.2.2 <u>Aile</u>

🐓 Aile (Avion1)		
A	ile	
The second secon	-PCA2000	
	Surface (m²)	
	C Envergure (m)	
	Allongement 7,00 (-)	
	Position longitudinale sur le fuselage (m)	
2 14	Position verticale sur le fuselage (m)	
014	Incidence à l'emplanture (*)	
	Vrillage (*)	
319 34	Dièdre (*)	
	Effilement (+)	
	Flèche mesurée au bord d'attaque (*)	
100	Capacité des réservoirs (1)	
	Profil :	
		
	Fermer / Précédent Suivent \	Calcular

Figure 5.4 : Modélisation de niveau 1 (Aile)

5.3.2.3 Empennages

Figure 5.5 : Modélisation de niveau 1 (Empennages)

Lors d'une modélisation de niveau 1, en fonction de la configuration générale de l'appareil, la surface relative d'empennages comprend à la fois l'empennage horizontal, vertical et le plan canard.

5.3.2.4 Fuselage

🐓 Fuselage (Avion1)	_ 🗆 🗙
Généralités	
_ PCA2000	
Hauteur max. 1,100 (m)	
Largeur max. 1,200 (m)	
Longueur 7,000 (m)	
Longueur à section constante 0,000 (m)	
Coefficient de forme (vue de face) U.950 (-)	
Coerricient de forme (vue de prom) 2,034 (-)	
© Euselage droit	
C Fuselage pincé	
Fermer < Précédent Suivant > 1	Calculer

Figure 5.6 : Modélisation de niveau 1 (Fuselage)

5.3.2.5 <u>Moteur</u>

Figure 5.7 : Modélisation de niveau 1 (Moteur)

L'objectif de la modélisation de niveau 1 est de déterminer entre autre la puissance théorique du moteur pour atteindre les performances voulues. A ce niveau de modélisation, dans le but d'être le plus exhaustif possible, on ne choisit par conséquent pas un moteur donné mais un moteur d'une technologie donnée dont seront extraites les caractéristiques de masse et de consommation spécifiques.

20 catégories différentes de moteur ont été définies :

- 1. 2T refroidi par air
- 2. 2T refroidi par air (Rotax)
- 3. 2T refroidi par liquide
- 4. 2T refroidi par liquide (Rotax)
- 5. 2T refroidi par liquide (2SI)
- 6. 4T refroidi par air
- 7. 4T refroidi par air (Jabiru)
- 8. 4T refroidi par air (Lycoming)
- 9. 4T refroidi par air (Limbach/Sauer)
- 10. 4T refroidi par air & injection
- 11. 4T refroidi par air & injection (Lycoming)
- 12. 4T refroidi par air & turbo-injection (Lycoming)
- 13. 4T refroidi par liquide
- 14. 4T refroidi par liquide (Rotax)
- 15. Diesel 2T refroidi par air

- 16. Diesel 2T refroidi par liquide
- 17. Diesel 4T refroidi par air
- 18. Diesel 4T refroidi par liquide
- 19. Rotatif refroidi par liquide
- 20. Turbopropulseur

Une analyse statistique a été faite sur tous les moteurs appartenant à une catégorie donnée afin de définir des lois d'évolution de la masse et de la consommation spécifique en fonction de la puissance nominale du moteur.

Pour une modélisation de niveau 1, la masse de la propulsion ainsi que la quantité de carburant nécessaire pour remplir la mission donnée sont définies à partir de ces lois.

5.3.2.6 <u>Hélice</u>

🐓 Hélice (Avion1)	_ 🗆 X
Modèle PCA2000 Nombre de pâles : Image: State of the state o	
Fermer Cal	culer

Figure 5.8 : Modélisation de niveau 1 (Hélice)

5.3.2.7 Performances

Figure 5.9 : Modélisation de niveau 1 (Performances)

5.3.2.8 <u>Masses</u>

∲ Masse (Avion1)		_ 🗆 🗙
	Généralités PCA2000 Masse relative : Fraction de masse planeur Détail de la charge utile : Equipage Fret Masse de carburant Masse d'eau	0.350 (-) 77.0 (kg) / membre d'équipage 5.0 (kg) / membre d'équipage (kg) (kg)
	Fermer	< Précédent Suivant > Calculer

5.3.2.9 <u>Aérodynamique</u>

🐓 Aérodynamique	(Avion1)	x
	Généralités	
	_ PCA2000	
	Coefficient de portance maximum 2,00 (-)	
	C Charge alaire maximale (kg/m²)	
Constant of	Charge alaire à la masse à vide 🛛 🚺 (kg/m²)	
	Coefficients de friction :	
2 14	Volmoteur 0,00700 (-) à 2400 (m)	
(A)		
	Confficient de três és induite :	
21 211	Coefficient d'Uswald U,80 (+)	
A.		
		<u> </u>
	Fermer < Précédent Suivant > Calculer	

Figure 5.11 : Modélisation de niveau 1 (Aérodynamique)

5.3.2.10 Options

Figure 5.12 : Modélisation de niveau 1 (Options)

Si votre licence vous y autorise, il vous est offert la possibilité d'effectuer une modélisation optimisée. Pour ce faire, nous vous invitons à consulter le chapitre intitulé « Modélisation optimisée » du manuel de l'utilisateur.

Dans la mesure du possible, les données sont contrôlées en cours d'introduction.

Si par exemple l'utilisateur introduit une valeur négative alors que la valeur ne peut être que strictement positive, un message d'avertissement est affiché à l'écran, la cellule est réinitialisée et le curseur y est placé dessus.

5.3.3 <u>Calculs</u>

Pour effectuer les calculs, cliquez sur qui apparaît sur chaque fenêtre d'acquisition de données.

Si des données sont manquantes, un message d'avertissement est affiché à l'écran, ensuite, la fenêtre d'acquisition qui contient la cellule vide est à son tour affichée à l'écran et le curseur est placé sur la cellule vide.

Pour obtenir des informations détaillées au sujet des algorithmes utilisés lors de la modélisation, nous vous invitons à consulter les différentes notes techniques disponibles sur le site Internet de PCA2000.

5.3.4 <u>Résultats</u>

5.3.4.1 Introduction

Au terme des calculs, la fenêtre de résultats est automatiquement affichée.

enéralités Performances		
E S Généralités :		\ominus
GÉNÉRALITÉS	-	
Classification Avion		
Configuration générale Conventionnel		
Nombre de places 2 sièges en côte à côte		
Réglementation FAR Part 23		
Type Avion polyvalent		
Configuration de l'aile Cantilever, Rectangulaire, Droite, Basse		
Configuration des empennages Cruciforme, Fixés sur le fuselage		
Configuration de la p Un, Piston, Tractif, Fixée sur le fuselage		
Configuration du train d'at Fixe, Tricycle, Fixé sur le fuselage		
Surface mouillée totale 44,742 m ²		
AILE		
Surface 11,061 m ²		
Envergure 8,799 m		
	•	

Figure 5.13 : Modélisation de niveau 1 (Résultats)

⊗

Le premier volet contient toutes les informations exceptées celles relatives aux performances. Le second volet contient exclusivement les informations relatives aux performances.

Pour afficher les résultats dans leur ensemble :

- 1. Ouvrez le tiroir en déplaçant le pointeur de la souris sur celui-ci puis,
- 2. Cliquez sur le bouton à option intitulé Généralités.

Tous les résultats sont à présent affichés sur la même feuille.

Pour ne visualiser que les résultats qui se rapportent à un poste en particulier :

- 1. **Ouvrez** le tiroir puis
- 2. Cliquez sur le bouton à option correspondant.

5.3.4.2 <u>Généralités</u>

GENERALITES Nodèle Classification Configuration générale Nombre de places Réglementation Type Configuration de l'aile Configuration de l'aile Configuration de la p Un, Piston, Tractif, Fixé Configuration du train d'at Surface mouillée totale ALLE Surface Envergure	C Empennages C Fuselage C Moteur C Hélice C Masses C Aérodynamique	
---	---	--

5.3.4.3 Performances

Résultats (Avion1)		_ 🗆
Généralités Performances		
- PCA2000		
🔲 💟 Croisière :		\rightarrow
(DOLTATE)		
URUISIERE de mal	250 km /h	
Weege de vol	250 Km/H	
Altitude de mol	2/00 m	
Puissance dignonible	66 596 WW	
	00,000 %	
Hélice - Vitesse de rotation	2700 t/min	
Hélice - Angle de calage	20.0"	
Hélice - Vitesse en bout de pâle	950 km/h	
Hélice - Nombre de Mach en bout de pâle	0,798	
Hélice - Rendement	0,854	
Hélice - Coefficient de vitesse (J)	0,86	
Hélice - Coefficient de puissance (cp)	0,040	
Hélice - Coefficient de couple (Ct)	0,040	
Hélice - Traction (brute)	819,4 N	
Hélice - Traction (nette)	794,8 N	
		-
		Farmar
		renner

Figure 5.15 : Modélisation de niveau 1 (Performances)

5.3.4.4 Imprimer les résultats

Pour imprimer les résultats de la modélisation, **cliquez** sur le bouton de commande de la barre d'outil de la fenêtre principale.

5.3.4.5 Enregistrer les résultats

Pour enregistrer les résultats de la modélisation, **cliquez** sur le bouton de commande **la** de la barre d'outil de la fenêtre principale.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

5.3.4.6 Enregistrer le contenu de la zone d'affichage

Pour enregistrer le contenue de la zone d'affichage :

- 1. Cliquez sur un des boutons à option disponibles sur le tiroir
- 2. Cliquez sur le bouton de commande 🖬 <u>situé au-dessus de la zone d'affichage des</u> <u>résultats</u>.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

Deux fichiers de résultats ont été créés :

- 1. Le premier est un fichier texte (format .rtf) que vous pouvez ouvrir dans n'importe quel logiciel de traitement de texte.
- 2. Le second est un fichier texte (format .csv) que vous pouvez ouvrir dans n'importe quel tableur comme Excel par exemple.

5.4 Modélisation de niveau 2

5.4.1 <u>Description</u>

Pour accéder au module « Modélisation » **cliquez** sur [**Modélisation**], [**Avions**] puis [**Niveau 2**] de la barre de menus de la fenêtre principale. Vous pouvez également y accéder directement en cliquant sur de la barre d'outils verticale.

🐓 Général (Avion2)	
	Modèle Type Conf.gen. Conf.gen. (cont) Aménagement PCA2000 Modèle : Avion2 Classification : Avion léger Configuration générale : Conventionnel
	Fermer < Précédent Suivant > Calculer

Figure 5.16 : Modélisation de niveau 2 (Général)

Si vous avez choisi d'accéder au module « Modélisation » via le bouton de commande vous serez peut être amené à préciser le niveau de modélisation souhaité. Ceci se fait via la barre d'état de la fenêtre principale. **Cliquez** à l'endroit indiqué jusqu'à ce que le chiffre affiché soit 2.

	FR	SI	2	1	2	3	14/12/2004	21:49	1.

Niveau de modélisation

Figure 5.17: Barre d'état de la fenêtre principale

L'acquisition des données d'entrée se fait via 13 fenêtres spécifiques :

- 1. Généralités
- 2. Aile
- 3. Empennage horizontal
- 4. Empennage vertical
- 5. Fuselage
- 6. Atterrisseur
- 7. Moteur
- 8. Hélice
- 9. Systèmes
- 10. Performances
- 11. Masses
- 12. Aérodynamique
- 13. Options

Chaque fenêtre contient un ensemble de champs que l'utilisateur doit obligatoirement compléter pour pouvoir effectuer la modélisation. Les **champs grisés** sont inaccessibles et réservés à une modélisation d'un niveau différent de celui en cours.

?:

Pressez à tout instant sur la touche **F1** pour accéder à l'aide contextuelle.

%

Pour naviguer entre les contrôles d'une fenêtre, utilisez la **touche de tabulation**.

Pour naviguer entre les fenêtres, utilisez les touches Suivant ou Précédent ou le menu de la barre d'outils verticale.

5.4.2 <u>Remarques</u>

5.4.2.1 <u>Détermination du coefficient de portance maximum d'une surface portante</u>

La détermination de l'accroissement du coefficient de portance maximum d'une surface portante se fait selon la méthodologie décrite par Dr. Jan Roskam dans son ouvrage Airplane Design Part VI, pour volets simples, split, à simple fente, à double fente et Fowler.

5.4.2.2 Le coefficient de traînée propre (Cd0)

Le coefficient de traînée propre est calculé par rapport à la surface en plan de l'aile.

5.4.2.3 <u>Type d'hélice</u>

Lors d'une modélisation de niveau 2, les caractéristiques de l'hélice sont déterminées uniquement pour des hélices à pas fixe ou à vitesse constante mais non pour des hélices à pas variable. Ceci pour la simple raison qu'il est impossible de connaître avant d'effectuer la modélisation les valeurs extrêmes du pas de l'hélice. Si l'utilisateur souhaite envisager l'installation d'une hélice à pas variable, il doit procéder de la façon suivante :

- 1. **Exécuter** une modélisation en adoptant une hélice à vitesse constante
- 2. Noter les valeurs extrêmes du pas de l'hélice
- 3. **Exécuter** une modélisation en adoptant une hélice à pas fixe et en choisissant un pas d'hélice proche du petit pas pour explorer les performances de l'appareil au décollage, puis une autre valeur de pas pour la montée et la croisière.

5.4.3 Données d'entrées

5.4.3.1 Généralités

🐓 Général (Avion2	
	Modèle Type Conf.gen Conf.gen (cont) Aménagement PCA2000 Modèle : [Avrion2]
	Classification : Avion léger Configuration générale : Conventionnel
	Fermer < Précédent Suivant > Calculer

Figure 5.18 : Modélisation de niveau 2 (Général)

5.4.3.2 <u>Aile</u>

∲ Aile (avion2)			_ 🗆 X
C	Aile Gouvernes Volets		,
	Г ^{РСА2000}		
	Surface	(m²)	
	C Envergure	(m)	
Can the second	Allongement	9,00 (-)	
	Position longitudinale sur le fuselage	1,500 (m)	
2 14	Position verticale sur le fuselage	(m)	
	Incidence à l'emplanture	1,0 (*)	
	Vrillage	2,0 (*)	
10 131	Dièdre	6,0 (*)	
11211	Effilement	0,60 (+)	
211	Flèche mesurée au bord d'attaque	5,0 (*)	
1	Capacité des réservoirs	(1)	
	Profil :		
	NACA 66(3)-218	•	
	Fermer	Précédent Suivant >	Calculer

Figure 5.19 : Modélisation de niveau 2 (Aile)

🐓 Empennage hori	izontal (avion2)	_ 🗆 🗡
	Empennage Gouvernes Profondeur	1
	Type : Empennage et gouverne de profondeur	
	Surface relative d'empennage 0,15 (-) Envergure (m)	
	Allongement 6,0 (·) Effilement 0,60 (·) Volume d'empennage 0,700 (·)	
	Flèche mesurée au bord d'attaque 10,0 (*) Vrillage 0,0 (*)	
	Profil: NACA 66-009	
	Fermer < Précédent Suivant >	Calculer

5.4.3.3 Empennage horizontal

Figure 5.20 : Modélisation de niveau 2 (Empennage horizontal)

	Empennage		
	F PCA2000		
	Type :		
	Plan fixe et surface mobile	•	
	Surface relative d'empennage	(·)	
	Envergure	(m)	
		()	
100	Allongement	[+]	
	Effilement	0.60 (-)	
	Volume d'empennage	0.040 (-)	
12/1	Flèche mesurée au bord d'attaque	35,0 (*)	
Car -	Profil :		
	NACA 66-009	•	

5.4.3.4 Empennage vertical

Figure 5.21 : Modélisation de niveau 2 (Empennage vertical)

5.4.3.5 Fuselage

🐓 Fuselage (avion2)		
	Généralités Cabine		
	PCA2000 Hauteur max. Largeur max. Longueur Longueur à section constante	1,200 (m) 1,200 (m) (m) (m)	
	Coefficient de forme (vue de face) Coefficient de forme (vue de profil) C Fuselage droit C Fuselage pincé	0,850 (-)	
	Fermer	<pre>< PrecedentSuivant ></pre>	Calculer

Figure 5.22 : Modélisation de niveau 2 (Fuselage)

La longueur du fuselage est calculée en fonction :

- Des positions des empennages et donc des critères de stabilité
- De la dimension du fuselage au maître couple afin de minimiser la traînée propre du fuselage
- La surface mouillée du fuselage est calculée sur base de la géométrie générée.

Le **coefficient de forme longitudinal** est déduit de la surface mouillée calculée et de la longueur totale du fuselage.

5.4.3.6 Train d'atterrissage

🐓 Train d'atterrissag	e (Avion2)	
	Train principal Train auxiliaire PCA2000 Pneumatiques : 6.00-6 Jiamètre de la roue 444,5 Largeur de la roue 160 Train principal Train principal	
	Fermer < Précédent Suivant > 0	Calculer

Figure 5.23 : Modélisation de niveau 2 (Train d'atterrissage)

L'utilisateur choisit les pneumatiques dans un catalogue de pneumatiques. Ce simple choix entraîne la connaissance immédiate des dimensions des roues. Critère important pour déterminer la traînée occasionnée par les différents composants du train d'atterrissage. Si le pneumatique ne figure pas dans la liste proposée, l'utilisateur choisit NA (non disponible) et introduit lui-même les dimensions de la roue dans les cases appropriées.

5.4.3.7 <u>Moteur</u>

🐓 Moteur (avion2)			<u>_ ×</u>
	Moteur		
	_ PCA2000		
	Moteur 1		
	Modèle :		
6 1	Rotax 914 UL	T	
	Coefficient de correction de puiss	ance 1,00 (-)	
5	Fonctionnement à puissance	maximale au décollage	
100	Moteur 2		
	Modèle :		
	Rotax 914 UL	•	
19 111	Coefficient de correction de puiss	ance (-)	
	Fonctionnement à puissance	maximale au décollage	
-10	Accessoires moteurs :	Nacelles moteur :	
1	E Réducteur	Vacelle	
	Turbo compresseur	Pylône	
	Fermer	< Précédent Suivant >	Calculer

Figure 5.24 : Modélisation de niveau 2 (Moteur)

L'utilisateur choisit le moteur qu'il envisage d'utiliser dans une liste de moteurs. Ce simple choix entraîne la connaissance immédiate de toutes les caractéristiques du moteur y compris ses courbes de puissance et de consommation spécifique.

ATTENTION

Si le moteur est équipé d'un réducteur, comme c'est le cas du **Rotax 912** par exemple, les caractéristiques du réducteur auront été spécifiées dans le fichier de données du moteur (cf. chapitre 8 du manuel de l'utilisateur).

Au niveau de la modélisation de niveau 2, l'utilisateur a la possibilité de donner les caractéristiques d'un réducteur qui serait ajouté à un moteur qui n'en est pas pourvu d'origine. On pourrait envisager par exemple pour une application spécifique d'équiper un avion d'un moteur **Lycoming O-320-B1B** et d'ajouter un réducteur au rapport de 1/1.245. Les caractéristiques de ce réducteur « externe » devront être précisées au niveau de la page **Moteur** de la modélisation de niveau 2.

5.4.3.8 L'hélice

🐓 Hélice (avion2)		_ 🗆 🗙
	Modèle	
	_ PCA2000	
	Nombre de pâles :	
	3 🚍	
	Туре:	
	A vitesse constante hydraulique	
2 15	Matériaux :	
112	Metal	
	Profil de pâle :	
11211	Facteur d'activité	
-1		_
	Vitesse de rotation (t/min)	
	Nombre de Mach maximum	
	Fermer < Précédent Suivant > C	alculer

Figure 5.25 : Modélisation de niveau 2 (Hélice)

L'utilisateur choisit le type d'hélice qu'il désire utiliser,

- soit une hélice à vitesse constante,
- soit une hélice à pas fixe.

Le choix du type d'hélice aura une influence considérable sur les performances au décollage et en montée ainsi que sur le devis de masse de l'appareil.

Une hélice à vitesse constante permet d'exploiter la puissance du moteur de façon optimale mais est plus lourde qu'une simple hélice à pas fixe.

5.4.3.9 Systèmes

Figure 5.26 : Modélisation de niveau 2 (Systèmes)

5.4.3.10 Performances

🐓 Performances (A	vion2)			2
	Dimensionner l'avion pour	hase de vol		
	r PCA2000			
	Décrochage :			
		VsV	(2)	
1 All	Vitesse de décrochage	km/h 95	5	
	Altitude densité	m O		
(i i i i				
S 14				
6110				
11 211				
22				
198				
-				
	Fermer	K Précéder	nt Suivant>	Calculer

Figure 5.27 : Modélisation de niveau 2 (Performances)

5.4.3.11 Masses

Figure 5.28 : Modélisation de niveau 2 (Masses)

La masse à vide de l'appareil est calculée en faisant la somme des masses spécifiques des différents composants de l'avion. La masse d'un composant est calculée sur base de ses dimensions géométriques ainsi que sur la masse maximale au décollage de l'appareil.

?:

Pour obtenir des informations détaillées au sujet des algorithmes utilisés lors de la modélisation, nous vous invitons à consulter les différentes notes techniques disponibles sur le site Internet de PCA2000.

5.4.3.12 Aérodynamique

Figure 5.29 : Modélisation de niveau 2 (Aérodynamique)

5.4.3.13 Options

Figure 5.30 : Modélisation de niveau 2 (Options)

Dans la mesure du possible, les données sont contrôlées en cours d'introduction.

Si par exemple l'utilisateur introduit une valeur négative alors que la valeur ne peut être que strictement positive, un message d'avertissement est affiché à l'écran, la cellule est réinitialisée et le curseur y est placé dessus.

5.4.4 <u>Calculs</u>

Pour effectuer les calculs, cliquez sur qui apparaît sur chaque fenêtre d'acquisition de données.

Si des données sont manquantes, un message d'avertissement est affiché à l'écran, ensuite, la fenêtre d'acquisition qui contient la cellule vide est à son tour affichée à l'écran et le curseur est placé sur la cellule vide.

Pour obtenir des informations détaillées au sujet des algorithmes utilisés lors de la modélisation, nous vous invitons à consulter les différentes notes techniques disponibles sur le site Internet de PCA2000.

5.4.5 <u>Résultats</u>

5.4.5.1 Introduction

Au terme des calculs, la fenêtre de résultats est automatiquement affichée.

PCA2000	
Généralités :	
	⊒∟
GENERALITES	
Modele Avion2	
Classification Avion leger	
Lonriguration generale Lonventionnel	
Nombre de places 4 sieges	
Regimentation JAR-VLA	
Type Avion polyvalent	
Structure Composite	
Configuration de l'alle Cantilever, Basse	
Configuration de la propulaion Douy Trastif. Fixés sur le fuseiage	
Configuration du train d'at Five Triguele Fivé sur le fuselege	
Longueur totale 7 703 m	
Surface mouillée totale 53,242 m*	
AILE	
Surface 11,630 m²	-

Figure 5.31 : Modélisation de niveau 2 (Généralités)

?₹

Le premier volet contient toutes les informations exceptées celles relatives aux performances. Le second volet contient exclusivement les informations relatives aux performances.

Pour afficher les résultats dans leur ensemble :

- 1. Ouvrez le tiroir en déplaçant le pointeur de la souris sur celui-ci puis,
- 2. Cliquez sur le bouton à option intitulé Généralités.

Tous les résultats sont à présent affichés sur la même feuille.

Pour ne visualiser que les résultats qui se rapportent à un poste en particulier :

- 1. **Ouvrez** le tiroir puis
- 2. Cliquez sur le bouton à option correspondant.

5.4.5.2 <u>Généralités</u>

Résultats (Avion2)		
Généralités Performances Polaire Graphique Centrage		
PCA2000		
🖬 📓 Généralités :	Généralités	
	C Aile	
GÉNÉRALITÉS	C Empennage horizontal	
Modèle	C Empennage vertical	
Configuration générale	C Fuselage	
Nombre de places	C Atterrisseur	
Réglementation	C Moteur	
Type	C Hélice	
Configuration de l'aile	C Systèmes	
Configuration des empennages Empennages en T, Fixé	C Masses	
Configuration de la propulsion Deux, Tractif,	C Aérodynamique	
Lonqueur totale	O Stabilité	
Surface mouillée totale		
ATTE		
Surface		
	Fermer	

5.4.5.3 Performances

r Résultats (Avion2)			
Generalites Performances Polaire Graphique Ge	entrage		
Croisière :			\bigcirc
CROISIÈRE Vitesse de vol		332 km/h	
Masse de vol		1001,6 kg	
Altitude de vol	1	2400.m	
Puissance disponible		156,432 kW	
Portance		9823 N	
Traînée		1403 N	
Traînée - Traînée de portance nulle		1315 N	
Traînée - Traînée induite		88 N	
Coefficient de portance		0,21	
Coefficient de traînée		0,02930	
Coefficient de traînée - Propre		0,02747 (93,8%)	
Coefficient de traînée - Induite		0,00183 (6,2%)	
Finesse		7,0	
Traînées spécifiques			
Coefficients de traînée propre			-
			Fermer

Figure 5.33 : Modélisation de niveau 2 (Performances)

Pour enregistrer le contenue de la zone d'affichage (onglets Généralités et Performances) :

- 1. Cliquez sur un des boutons à option disponibles sur le tiroir
- 2. Cliquez sur le bouton de commande 🖬 <u>situé au-dessus de la zone d'affichage des ré-</u><u>sultats</u>.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

-7€

Deux fichiers de résultats ont été créés :

- 1. Le premier est un fichier texte (format .rtf) que vous pouvez ouvrir dans n'importe quel logiciel de traitement de texte.
- 2. Le second est un fichier texte (format .csv) que vous pouvez ouvrir dans n'importe quel tableur comme Excel par exemple.

5.4.5.4 <u>Modèle 3D</u>

Si votre licence vous y autorise, vous pouvez accéder directement au **Module 3D** et visualiser un modèle numérique 3D en tout point conforme aux résultats de la modélisation.

L'accès au module 3D se fait en cliquant sur situé dans le coin supérieur gauche de la fenêtre de résultats.

Figure 5.34 : Modélisation de niveau 2 (Modèle numérique 3D)

Pour obtenir toutes les informations utiles au sujet du module 3D, nous vous prions de consulter le chapitre intitulé Module 3D du manuel de l'utilisateur.

	Altitude	de vol :	0 m			ainée propre - Train d'atterrissage principal [LGMCd0] 🚟
V km/h	TM m/s	Pd kw	Tn N	D N	Bh	
2	0.000	147.000	5105	0	0.024	
5	0,000	147,000	5069	0	0,047	
7	0,000	147,002	5032	0	0,071	
10	0,000	147,004	4995	0	0,093	
12	0,000	147,008	4956	0	0,116	
15	0,000	147,012	4917	0	0,138	
17	0,000	147,017	4878	0	0,160	
20	0,000	147,024	4837	0	0,181	
22	0,000	147,031	4796	0	0,202	
24	0,000	147,039	4754	0	0,222	
27	0,000	147,048	4712	0	0,242	
29	0,000	147,058	4670	0	0,262	
32	0,000	147,069	4626	0	0,281	
34	0,000	147,082	4583	0	0,300	
37	0,000	147,095	4539	0	0,318	_
- 20	0.000	147.100	4405	0	0.000	

5.4.5.5 Polaire des vitesses

neralites	Performa	ances [H	'olaire	Graphique	Centrage
V km/ 2 5	Altitude h TM m/s 0,000 0,000	de vol : Pd kW 147,000 147,000	0 m Tn N 5105 5069	D N 0 0	Trainée propre - Train d'atterrissage principal [LGMCd0] Trainée propre - Train d'atterrissage auxiliaire [LGACd0] Trainée propre - Moteur [EngCd1 Trainée propre - Moteur (refroidissement) [EngCdcool] D Trainée propre - Moteur (divers) [EngCdmis]
7 10 12	0,000 0,000 0,000	147,002 147,004 147,008	5032 4995 4956	0	0, Trainée propre - Nacelle [ENacCd0] 0, Trainée propre - Nacelle (culot) [ENacBasCd0] 0, Trainée propre - Interférence (OtherCd0]
15 17 20	0,000	147,012 147,017 147,024	4917 4878	0	0 Trainée induite - Aile [WngCdL] 0 Trainée induite - Volets [FlapsDcdL] 0 Trainée induite - Empennage horizontal [HTCdL]
20 22 24	0,000	147,031 147,039	4796 4754	0	Trainée induite - Empennage vertical (VTCdL) Trainée induite - Plan canard (CrdCdL) Trainée induite - Fuselage (FusCdL)
27 29 32	0,000	147,048 147,058 147,069	4712 4670 4626	0	O, Trainée induite - Train d'atteriissage principal [LGMCdL] O, Trainée induite - Train d'atteriissage auxiliaire [LGACdL] Trainée induite - Nacelle [ENacCdL]
34	0,000	147,082 147,095	4583 4539	0	0 Hélice - Angle de calage (AC) 0 Hélice - Vitesse de rotation (n) 0 ✓ Hélice - Rendement (Rh)

Figure 5.36 : Modélisation de niveau 2 (Affichage sélectif)

La polaire des vitesses est déterminée au niveau de la mer en atmosphère standard (0m, 15°C).

Pour chaque vitesse allant de 0 km/h à la vitesse maximale de vol sont donnés :

- Performances (taux, pente et angle de montée)
- Puissance disponible
- Traction de l'hélice
- Traînées (propre et induite)
- Coefficients de traînée (total, propre, induite et spécifiques)
- Rendement de l'hélice
- Angle de calage de l'hélice
- Coefficients caractéristiques de l'hélice (vitesse, puissance et couple)

Cliquez sur **I** pour enregistrer le contenu du tableau dans un fichier au format .csv que vous pouvez ouvrir dans n'importe quel tableur comme Excel par exemple.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

Le fichier .csv est enregistré dans le répertoire du jeu de données

Le nom du fichier .csv est défini SP- + numéro qui correspond à la date et heure d'enregistrement (par exemple SP-2005220933.csv).

Pour visualiser sur un graphique les informations contenues dans le tableau, **cliquez** directement sur l'onglet [**Graphique**] ou alors **cliquez** sur le bouton is placé au-dessus du tableau à gauche.

5.4.5.6 Mise en graphique des résultats

5.4.5.7 Centrage

	CGc (m)	CG (m)		CGc (m)	CG (m)	•
Pilote	1,716	1,716	Aile	2,141	2,141	
Passager	1,716	1,716	Empennage horizontal	7,307	7,307	
Passager 2	2,566	2,566	Empennage vertical	6,872	6,872	
Passager 3	2,566	2,566	Fuselage	2,874	2,874	
Frêt	2,141	2,141	Train principal	2,666	2,666	
Carburant	2,143	2,143	Train auxiliaire	0,300	0,300	
			Moteur (1)	1,566	1,566	
			Moteur (2)	1,566	1,566	
			Nacelle(1)	2,295	2,295	
			Nacelle(2)	2,295	2,295	-
Position des centre Appareil ——— CMA	es de gravit	.é <mark></mark>			• •	

Figure 5.39 : Modélisation de niveau 2 (Centrage)

La position des centres de gravités spécifiques ainsi que la position du centre de gravité de l'avion sont automatiquement calculées. La position de référence étant la pointe extrême avant de l'appareil.

Le tableau de gauche présente le détail de la charge utile. Le tableau de droite présente le détail des composants de l'avion (aile, empennages, ...).

Pour chaque tableau, la deuxième colonne à partir de la droite (fond gris) contient les valeurs qui ont été automatiquement calculées par le logiciel. Tandis que la première colonne à partir de la droite (fond blanc) contient les valeurs qui seront adoptées par l'utilisateur. Par défaut, ces valeurs sont identiques à celles calculées.

Une représentation graphique est affichée au bas de la fenêtre. Les centres de gravité spécifiques sont représentés par des ronds de couleur orange et sont positionnés sur une ligne dont la longueur est égale à la longueur hors tout de l'appareil. La masse utile est représentée par des carrés de couleur verte.

La position du centre de gravité de l'avion est représentée par des ronds de couleur bleue et sont positionnés sur une ligne dont la longueur est égale à la longueur de la corde moyenne aérodynamique de l'aile (CMA). La position du centre de gravité de l'avion a été calculée pour 2 cas de charge extrêmes à savoir celui qui correspond à la masse maximale de vol ainsi que celui qui correspond à la masse minimale de vol.

2 traits verticaux rouge représentent les limites extrêmes avant et arrière du centre de gravité pour assurer respectivement une bonne pilotabilité et une bonne stabilité. Quel que soit le cas de charge, le centre de gravité de l'avion doit se trouver à l'intérieur de ces limites.

Lorsque le pointeur de la souris est déplacé sur le graphique, les coordonnées locales sont affichées ainsi que la référence de l'élément sélectionné.

Pour enregistrer une image du graphique **cliquez** sur le bouton de commande **l** <u>situé au-</u><u>dessus du graphique</u>.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

Deux fichiers images ont été créés :

- 1. Le premier au format .bmp
- 2. Le second au format .jpg

Les différents résultats qui peuvent être affichés sous forme de graphique sont :

- Les performances
- Taux de montée
- Pente de montée
- Angle de montée
- Traction et traînée
- Puissance disponible
- Puissances
- Les paramètres caractéristiques de l'hélice
- Angle de calage
- Vitesse de rotation
- Coefficients caractéristiques
- Les coefficients de traînée spécifiques
- Coefficients de traînée propre
- Coefficients de traînée induite

5.4.5.8 Imprimer les résultats

Pour imprimer les résultats de la modélisation, **cliquez** sur le bouton de commande 🙆 de la barre d'outil de la fenêtre principale.

5.4.5.9 Enregistrer les résultats

Pour enregistrer les résultats de la modélisation, **cliquez** sur le bouton de commande **la** la barre d'outil de la fenêtre principale.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

5.5 Modélisation de niveau 3

5.5.1 <u>Description</u>

Pour accéder au module « Modélisation », cliquez sur [Modélisation], [Avions] puis [Niveau 3] de la barre de menus de la fenêtre principale. Vous pouvez également y accéder directement en cliquant sur de la barre d'outils verticale.

🐓 Général (Avion3)		_ 🗆 🗙
	Modèle Type Conf.gen. Conf.gen. (cont) Aménagement PCA2000 Modèle : Image: Conf.gen. (cont) Aménagement Image: Conf.gen. (cont) Aménagement Modèle : Image: Conf.gen. (cont) Image: Conf.gen. (cont) Aménagement Image: Conf.gen. (cont) Aménagement Classification : Avion léger Image: Configuration générale : Image: Conventionnel Image: Conventione </th <th></th>	
	Fermer < Précédent Suivant > Ca	alculer

Figure 5.40 : Modélisation de niveau 3 (Général)

Si vous avez choisi d'accéder au module « Modélisation » via le bouton de commande vous serez peut être amené à préciser le niveau de modélisation souhaité. Ceci se fait via la barre d'état de la fenêtre principale. Cliquez à l'endroit indiqué jusqu'à ce que le chiffre affiché soit 3.

FR	SI	2	1	2	3	14/12/2004	21:49	//.

Niveau de modélisation

Figure 5.41 : Barre d'état de la fenêtre principale

L'acquisition des données d'entrée se fait via 13 fenêtres spécifiques :

- 1. Généralités
- 2. Aile
- 3. Empennage horizontal
- 4. Empennage vertical
- 5. Fuselage
- 6. Atterrisseur
- 7. Moteur
- 8. Hélice
- 9. Systèmes
- 10. Performances
- 11. Masses
- 12. Aérodynamique
- 13. Options

Chaque fenêtre contient un ensemble de champs que l'utilisateur doit obligatoirement compléter pour pouvoir effectuer la modélisation. Les **champs grisés** sont inaccessibles et réservés à une modélisation d'un niveau différent de celui en cours.

. ()

Pressez à tout instant sur la touche **F1** pour accéder à l'aide contextuelle.

%

Pour naviguer entre les contrôles d'une fenêtre, utilisez la **touche de tabulation**.

Pour naviguer entre les fenêtres, utilisez les touches Suivant ou Précédent ou le menu de la barre d'outils verticale.

5.5.2 <u>Remarques</u>

5.5.2.1 <u>Détermination du coefficient de portance maximum d'une surface portante</u>

La détermination de l'accroissement du coefficient de portance maximum d'une surface portante se fait selon la méthodologie décrite par Dr. Jan Roskam dans son ouvrage Airplane Design Part VI, pour volets simples, split, à simple fente, à double fente et Fowler.

5.5.2.2 Le coefficient de traînée propre (Cd0)

Le coefficient de traînée propre est calculé par rapport à la surface en plan de l'aile.

5.5.2.3 <u>Type d'hélice</u>

Lors d'une modélisation de niveau 3, les caractéristiques de l'hélice sont déterminées pour des hélices à pas fixe, à pas variable ou à vitesse constante

5.5.3 Données d'entrées

5.5.3.1 <u>Généralités</u>

Moo	dèle Type Conf.gen. Conf.gen. (cont) Aménagement	_ 1
	Modele : Avion3 Classification :	-
	Avion léger	

Figure 5.42 : Modélisation de niveau 3 (Général)

5.5.3.2 <u>Aile</u>

🐓 Aile (Avion3)			
	Généralités Gouvernes Volets		[
	Surface Envergure	8,000 (m²) 10,000 (m)	
	Position longitudinale sur le fuselage Position verticale sur le fuselage	2,500 (m) 0,000 (m)	
500	Calage à l'emplanture Vrillage	1,0 (°) 2,0 (°)	
	Dièdre Effilement	6,0 (*) 1,00 (-)	
2	Capacité des réservoirs	70 (1)	
	Profil : NLF(1)-0416	T	
	Fermer <	Précédent Suivant >	Calculer

Figure 5.43 : Modélisation de niveau 3 (Aile)

5.5.3.3 Empennage horizontal

🐓 Empennage horiz	ontal (Avion3)	
· · · · · · · · · · · · · · · · · · ·	Généralités Gouvernes Profondeur PCA2000 PCA2000 Type : Empennage et gouverne de profondeur V	
30	Surface 2,065 (m²) Envergure 3,520 (m)	
0 21	Allongement 6.0 (·) Effilement 1.00 (·)	
	Position verticale sur le fuselage 0.500 (m) Angle de calage relatif - 2.0 (*)	
10	Vrillage	
	Profit: NACA 66-009	
	Fermer < Précédent Suiva	nt > Calculer

Figure 5.44 : Modélisation de niveau 3 (Empennage horizontal)

	Généralités	
	- PCA2000-	
	Type :	
	Plan fixe et surface mobile	
C. L		
	Surrace 1,3/6 (m ²)	
5	Envergure [1,173 (m)	
	állongement 100 ()	
	Effilement 0.40 (-)	
•	Position longitudinale sur le fuselage 5,136 (m)	
11/2/11/		
1211	Flèche mesurée au bord d'attaque 35,0 (*)	
211		
100		
	Fermer < Précédent Suivant >	Calculer

5.5.3.4 Empennage vertical

Figure 5.45 : Modélisation de niveau 3 (Empennage vertical)

5.5.3.5 Fuselage

🐓 Fuselage (Avior	13)	
	Généralités Cabine	
6	Hauteur max. 1,1 Largeur max. 1,1 Longueur 7,0 Longueur à section constante 0,0	00 (m) 00 (m) 61 (m) 00 (m)
	Coefficient de forme (vue de face) 0.9 Coefficient de forme (vue de profil) 2.7	50 (·) 42 (·)
	Fuselage droit Fuselage pincé	
	Surface en plan (vue de face) 1.2 Surface en plan (vue de profil) 0.0 Surface en plan (vue de dessus) 0.0	54 (m²) 00 (m²) 00 (m²)
	Fermer < Précéde	nt Suivant > Calculer

Figure 5.46 : Modélisation de niveau 3 (Fuselage)

5.5.3.6 <u>Train d'atterrissage</u>

ge (Avion3)	_ 🗆 🗵
Train principal Train auxiliaire	
-PCA2000	
Position :	
▼	
Position longitudinale 3,000 (m)	
Amortisseurs :	
Poermatiques :	
6.00-6 Carénages	
Diamètre de la roue 444.5 (mm)	
Largeur de la roue 160 (mm)	
Train principal	
Train rentrant	
Fermer < Précédent Suivant >	Calculer
	ge (Avion3) Train principal Train principal Position : Position : Position in longitudinale 3,000 (m) Amortisseurs : Pneumatiques : §.00-6 Diamètre de la roue 160 (mm) Train principal Train rentrant

Figure 5.47 : Modélisation de niveau 3 (Train d'atterrissage)

L'utilisateur choisit les pneumatiques dans un catalogue de pneumatiques. Ce simple choix entraîne la connaissance immédiate des dimensions des roues. Critère important pour déterminer la traînée occasionnée par les différents composants du train d'atterrissage. Si le pneumatique ne figure pas dans la liste proposée, l'utilisateur choisit NA (non disponible) et introduit lui-même les dimensions de la roue dans les cases appropriées.

5.5.3.7 <u>Moteur</u>

🐓 Moteur (avion3)			×
0	Moteur		
	PCA2000		
	Moteur 1		
	Modèle :		
Contraction of the second	Rotax 912 UL	•	
	Coefficient de correction de puissa	ance 1,00 (-)	
5 11	🔲 Fonctionnement à puissance r	naximale au décollage	
100	Accessoires moteurs :	Nacelles moteur :	
	Réducteur	🗖 Nacelle	
No alla	Turbo compresseur	Pylône	
14 2.31			
Soft I			
100			
_			_
	Fermer	< Précédent Suivant > Calculer	

Figure 5.48 : Modélisation de niveau 3 (Moteur)

L'utilisateur choisit le moteur qu'il envisage d'utiliser dans une liste de moteurs. Ce simple choix entraîne la connaissance immédiate de toutes les caractéristiques du moteur y compris ses courbes de puissance et de consommation spécifique.

ATTENTION

Si le moteur est équipé d'un réducteur, comme c'est le cas du **Rotax 912** par exemple, les caractéristiques du réducteur auront été spécifiées dans le fichier de données du moteur (cf. chapitre 8 du manuel de l'utilisateur).

Au niveau de la modélisation de niveau 3, l'utilisateur a la possibilité de donner les caractéristiques d'un réducteur qui serait ajouté à un moteur qui n'en est pas pourvu d'origine. On pourrait envisager par exemple pour une application spécifique d'équiper un avion d'un moteur **Lycoming O-320-B1B** et d'ajouter un réducteur au rapport de 1/1.245. Les caractéristiques de ce réducteur « externe » devront être précisées au niveau de la page **Moteur** de la modélisation de niveau 3.

5.5.3.8 L'hélice

🐓 Hélice (avion3)		_ 🗆 🗵
	Modèle Dimensions principales - PCA2000 Nombre de pâles : 3 ==	
	Type :	
	A vitesse constante hydraulique	
E LE	Maténaux : Bois	
014	Profil de nâle :	
141	Facteur d'activité	
The	Vitesse de rotation (t/min)	
	C Diamètre maximum (m)	
	Nombre de Mach maximum (+)	
	Fermer < Précédent Suivant > Ca	alculer

Figure 5.49 : Modélisation de niveau 3 (Hélice)

L'utilisateur choisit le type d'hélice qu'il désire utiliser,

- soit une hélice à vitesse constante,
- soit une hélice à pas fixe,
- soit une hélice à pas variable.

Le choix du type d'hélice aura une influence considérable sur les performances au décollage et en montée ainsi que sur le devis de masse de l'appareil.

Une hélice à vitesse constante permet d'exploiter la puissance du moteur de façon optimale mais est plus lourde qu'une simple hélice à pas fixe.

5.5.3.9 Systèmes

🐓 Systèmes (avio	n3)	_ 🗆 ×
	Carburant PCA2000 Capacité totale de carburant Carburant inutilisable (1) (1)	
	Position des réservoirs principaux : Aile	-
	Fermer < Précédent Suivant > Calc	culer

Figure 5.50 : Modélisation de niveau 3 (Systèmes)

🐓 Performances (A	vion3)				_ 🗆 ×
	Phase de vol				
	_ PCA2000				
	Décollage :				
			Mode 1	1	
In the	Altitude densité	m	0		
	Vitesse de décollage	km/h	100		
	DABF - débattement	*	0,0	1	
2	Piste - pente	%	0,0		
100	Piste - type		Asphalte		
0/18	Vent debout	km/h	0		
	Ferme	· <	Précédent	Suivant >	Calculer

5.5.3.10 Performances

Figure 5.51 : Modélisation de niveau 3 (Performances)

5.5.3.11 Masses

Figure 5.52 : Modélisation de niveau 3 (Masses)

Contrairement aux 2 niveaux de modélisation précédents, la modélisation de niveau 3 détermine les performances de l'appareil pour une masse de vol donnée.

La masse à vide de l'appareil est calculée en faisant la somme des masses spécifiques des différents composants de l'avion. La masse d'un composant est calculée sur base de ses dimensions géométriques ainsi que sur la masse maximale au décollage de l'appareil.

X

Pour obtenir des informations détaillées au sujet des algorithmes utilisés lors de la modélisation, nous vous invitons à consulter les différentes notes techniques disponibles sur le site Internet de PCA2000.

5.5.3.12 Aérodynamique

Figure 5.53 : Modélisation de niveau 3 (Aérodynamique)

5.5.3.13 Options

Figure 5.54 : Modélisation de niveau 3 (Options)

Si votre licence vous y autorise, il vous est offert la possibilité d'effectuer une modélisation optimisée. Pour ce faire, nous vous invitons à consulter le chapitre intitulé « Modélisation optimisée » du manuel de l'utilisateur.

5.5.4 <u>Calculs</u>

Pour effectuer les calculs, cliquez sur qui apparaît sur chaque fenêtre d'acquisition de données.

Si des données sont manquantes, un message d'avertissement est affiché à l'écran, ensuite, la fenêtre d'acquisition qui contient la cellule vide est à son tour affichée à l'écran et le curseur est placé sur la cellule vide.

Pour obtenir des informations détaillées au sujet des algorithmes utilisés lors de la modélisation, nous vous invitons à consulter les différentes notes techniques disponibles sur le site Internet de PCA2000.

5.5.5 <u>Résultats</u>

5.5.5.1 Introduction

Au terme des calculs, la fenêtre de résultats est automatiquement affichée.

Généralités :		€
CÉNÉDAL TTÝ S		-
Modèle Avion3	_	
Classification Avion Léger		
Configuration générale Conventionnel		
Nombre de places 2 sièges en côte à côte		
Réglementation JAR-VLA		
Type Avion polyvalent		
Structure Composite		
Configuration de l'aile Cantilever, Rectangulaire, Droite, Basse		
Configuration des empennages Cruciforme, Fixés sur le fuselage		
Configuration de la p Un, Piston, Tractif, Fixée sur le fuselage		
Configuration du train d'at Fixe, Tricycle, Fixé sur le fuselage		
Surface mouillée totale 48,839 m ²		
AILE		
Surface 8,000 m ²		
Envergure 10,000 m	•	
		_

Figure 5.55 : Modélisation de niveau 3 (Généralités)

Le premier volet contient toutes les informations exceptées celles relatives aux performances. Le second volet contient exclusivement les informations relatives aux performances.

Pour afficher les résultats dans leur ensemble :

- 1. Ouvrez le tiroir en déplaçant le pointeur de la souris sur celui-ci puis,
- 2. Cliquez sur le bouton à option intitulé Généralités.

Tous les résultats sont à présent affichés sur la même feuille.

Pour ne visualiser que les résultats qui se rapportent à un poste en particulier :

- 1. **Ouvrez** le tiroir puis
- 2. Cliquez sur le bouton à option correspondant.

5.5.5.2 <u>Généralités</u>

🕨 Résultats (Avion3)	×
Généralités Performances Polaire Graphique	
PCA2000	
Généralités :	• <u>Généralités</u>
GÉNÉRALITÉS	C Empennage horizontal
Modèle Classification	C Empennage vertical
Configuration générale	C Fuselage
Nombre de places 2 sièg Réglementation	C Atterrisseur
Type	C Hélice
Configuration de l'aile Cantilever, Rectangulai	C Systèmes
Configuration des empennages Cruciforme, Fixé Configuration de la p Un, Piston, Tractif, Fixé	C Masses
Configuration du train d'at Fixe, Tricycle, Fix	C Aérodynamique
Surface mouillee totale	C Stabilité
AILE	
Envergure	
7	Fermer

Figure 5.56 : Modélisation de niveau 3 (Affichage sélectif)

5.5.5.3 Performances

Résultats (Avion3)		
Généralités Performances Polaire Graphique		
r PCA2000		
Croisière :		🕀
CROISIÈRE		-
Vitesse de vol	226 km/h	
Altitude de vol	2400.m	
Puissance disponible	44,968 kW	
Puissance relative du moteur	77,5 %	
Vitesse de rotation du moteur	5500 t/min	
Hélice - Vitesse de rotation	2423 t/min	
Hélice - Angle de calage	27,1°	
Hélice - Vitesse en bout de pâle	721 km/h	
Hélice - Nombre de Mach en bout de pâle	0,606	
Hélice - Rendement	0,837	
Coefficient de frottement (cf)	0,00600	
Portance	5246,6 N	
Traînée	616,2 N	
Traînée - Traînée de portance nulle	558,7 N	-
,		
		Fermer

Figure 5.57 : Modélisation de niveau 3 (Performances)

Pour enregistrer le contenue de la zone d'affichage (onglets Généralités et Performances) :

- 1. Cliquez sur un des boutons à option disponibles sur le tiroir
- 2. **Cliquez** sur le bouton de commande situé au-dessus de la zone d'affichage des ré-<u>sultats</u>.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

?₹

Deux fichiers de résultats ont été créés :

- 1. Le premier est un fichier texte (format .rtf) que vous pouvez ouvrir dans n'importe quel logiciel de traitement de texte.
- 2. Le second est un fichier texte (format .csv) que vous pouvez ouvrir dans n'importe quel tableur comme Excel par exemple.

5.5.5.4 Polaire des vitesses

🐓 Ré	ésultats (Avion3)					
64		Destaura		Polairo I	Carabiana	1	
ue	eneralites	Ferrorma	inces		Graphique	1	1
						COV/Annual N/1	
		Altitude	de vol :	Um		Vitesse de voi [V]	
	V km/h	TM m/s	Pd kW	Tn N	Rh		
	2		58,000	1536,9	0,017		
	4		58,000	1535,8	0,033		
	7		58,001	1534,4	0,050		
	9		58,001	1532,9	0,066		
	11		58,002	1531,1	0,083		
	13		58,004	1529,1	0,099		
	15		58,005	1526,8	0,116		
	17		58,007	1524,3	0,132		
	20		58,010	1521,5	0,148		
	22		58,012	1518,5	0,164		
	24		58,015	1515,2	0,180		
	26		58,018	1511,6	0,196		
	28		58,022	1507,7	0,212		
	31		58,026	1503,5	0,228		
	33		58,030	1499,0	0,243		
	25		E0.004	1404.0	0.050		
							reimer

Figure 5.58 : Modélisation de niveau 3 (Polaire des vitesses)

	Altitude de	vol:0 m			Vitesse de vol [V]	
V km/h	TM m/s Po	kw Tr	n N	Bh	✓ Taux de montée [TM]	
2	58	3,000 15	36,9	0,017	Ande de montee [P]	
4	58	3,000 15	35.8	0.033	Puissance disponible [Pd]	
7	58	3.001 15	34.4	0.050	✓ Traction hélice [Tn]	
9	58	3.001 15	32.9	0.066	Traînée totale [D]	
11	58	3,002 15	31,1	0,083	Traînée propre (DO)	• I
13	58	3.004 15	29.1	0.099	Traînée induite [DL]	
15	58	3.005 15	26.8	0.116	Coefficient de traînée totale [cd]	—
17	58	3.007 15	24.3	0.132	Coefficient de traînée propre [cd0]	
20	58	3.010 15	21.5	0.148	Coefficient de trainée induite [cdL]	
22	58	3012 15	18.5	0.164	Trainée propre - Aile M/ngCd01	
24	58	3.015 15	15.2	0.180	Trainée propre - Volets (FlapsDcd0)	
26	58	3.018 15	11.6	0.196	Trainée propre - Volets [FlapsDcdInt]	
28	58	3.022 15	07.7	0,212	Trainée propre - Empennage horizontal [HTCd0]	
31	58	3.026 15	03.5	0.228	Trainée propre - Empennage vertical [VTCd0]	
33	58	3.030 14	99.0	0.243	Trainée propre - Plan canard [CrdCd0]	
15	E(1004 14	04.0	0.050	☐ Trainée propre - Fuselage [FusCd0]	_

Figure 5.59 : Modélisation de niveau 3 (Affichage sélectif)

La polaire des vitesses est déterminée à l'altitude de vol définie pour la phase de montée. Pour chaque vitesse allant de 0 km/h à la vitesse maximale de vol sont donnés :

- Performances (taux, pente et angle de montée)
- Puissance disponible
- Traction de l'hélice
- Traînées (propre et induite)
- Coefficients de traînée (total, propre, induite et spécifiques)
- Rendement de l'hélice
- Angle de calage de l'hélice
- Coefficients caractéristiques de l'hélice (vitesse, puissance et couple)

Cliquez sur **I** pour enregistrer le contenu du tableau dans un fichier au format .csv que vous pouvez ouvrir dans n'importe quel tableur comme Excel par exemple.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

Le fichier .csv est enregistré dans le répertoire du jeu de données

Le nom du fichier .csv est défini SP- + numéro qui correspond à la date et heure d'enregistrement (par exemple SP-2005220933.csv).

Pour visualiser sur un graphique les informations contenues dans le tableau, **cliquez** directement sur l'onglet [**Graphique**] ou alors **cliquez** sur le bouton is placé au-dessus du tableau à gauche.

5.5.5.5 Mise en graphique des résultats

Figure 5.61 : Modélisation de niveau 3 (Affichage sélectif)

5.5.5.6 Centrage

harge utile :			Lomposants :			_
	CGc (m)	CG (m)		CGc (m)	CG (m)	-
Pilote	2,379	2,379	Aile	2,379	2,379	
Passager	2,379	2,379	Empennage horizontal	5,694	5,694	
Frêt	2,379	2,379	Empennage vertical	5,686	5,686	
Carburant	2,379	2,379	Fuselage	2,515	2,515	
			Train principal	3,000	3,000	
			Train auxiliaire	0,500	0,500	
			Moteur	0,367	0,367	
			Hélice	0,135	0,135	
			Système de carburant	2,379	2,379	
			Système de contrôle	2,539	2,539	•
Position des cent Appareil -> >> CMA	res de gravi	té	ə	•		

Figure 5.62 : Modélisation de niveau 3 (Centrage)

La position des centres de gravités spécifiques ainsi que la position du centre de gravité de l'avion sont automatiquement calculées. La position de référence étant la pointe extrême avant de l'appareil.

Le tableau de gauche présente le détail de la charge utile. Le tableau de droite présente le détail des composants de l'avion (aile, empennages, ...).

Pour chaque tableau, la deuxième colonne à partir de la droite (fond gris) contient les valeurs qui ont été automatiquement calculées par le logiciel. Tandis que la première colonne à partir de la droite (fond blanc) contient les valeurs qui seront adoptées par l'utilisateur. Par défaut, ces valeurs sont identiques à celles calculées.

Une représentation graphique est affichée au bas de la fenêtre. Les centres de gravité spécifiques sont représentés par des ronds de couleur orange et sont positionnés sur une ligne dont la longueur est égale à la longueur hors tout de l'appareil. La masse utile est représentée par des carrés de couleur verte.

La position du centre de gravité de l'avion est représentée par des ronds de couleur bleue et sont positionnés sur une ligne dont la longueur est égale à la longueur de la corde moyenne aérodynamique de l'aile (CMA). La position du centre de gravité de l'avion a été calculée pour 2 cas de charge extrêmes à savoir celui qui correspond à la masse maximale de vol ainsi que celui qui correspond à la masse minimale de vol.

2 traits verticaux rouge représentent les limites extrêmes avant et arrière du centre de gravité pour assurer respectivement une bonne pilotabilité et une bonne stabilité. Quel que soit le cas de charge, le centre de gravité de l'avion doit se trouver à l'intérieur de ces limites.

Lorsque le pointeur de la souris est déplacé sur le graphique, les coordonnées locales sont affichées ainsi que la référence de l'élément sélectionné.

Pour enregistrer une image du graphique **cliquez** sur le bouton de commande **l** <u>situé au-</u><u>dessus du graphique</u>.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.

Deux fichiers images ont été créés :

- 1. Le premier au format .bmp
- 2. Le second au format .jpg

Les différents résultats qui peuvent être affichés sous forme de graphique sont :

- Les performances
- Taux de montée
- Pente de montée
- Angle de montée
- Traction et traînée
- Puissance disponible
- Puissances
- Les paramètres caractéristiques de l'hélice
- Angle de calage
- Vitesse de rotation
- Coefficients caractéristiques
- Les coefficients de traînée spécifiques
- Coefficients de traînée propre
- Coefficients de traînée induite

5.5.5.7 Imprimer les résultats

Pour imprimer les résultats de la modélisation, **cliquez** sur le bouton de commande barre d'outil de la fenêtre principale.

5.5.5.8 Enregistrer les résultats

Pour enregistrer les résultats de la modélisation, **cliquez** sur le bouton de commande **la** la barre d'outil de la fenêtre principale.

Un message apparaît dans la zone d'affichage des commentaires pour vous informer de l'état de l'enregistrement.